
Appendix
A The Quantity Comparison Between Activations and Weights

As shown in Table 4, Dl/Cl is the size/channel of output of layer l and Dl�1/Cl�1 is the size/channel of input to layer l; k
is the kernel size. Normally, Dl ⇡ Dl�1 and Dl � k. Therefore, weights occupy greatly more memory overheads than the
corresponding activations for FC; for LC, the weights also occupy more memory overheads than the corresponding activations
because (Cl ⇥ k ⇥ k) > (Cl�1 + Cl). On the contrary, for CNN, the activations occupy greatly more memory overheads than
the corresponding weights.

Activations Weights

FC Dl+Dl�1 Dl⇥Dl�1

LC Cl ⇥Dl+Cl�1 ⇥Dl�1 Cl ⇥ k ⇥ k ⇥Dl

CNN Cl ⇥Dl+Cl�1 ⇥Dl�1 Cl ⇥ k ⇥ k

Table 4: The quantity comparison between activations and weights for TinyFoA in various DNN architectures.



B Equations for TinyFoA and Other Algorithms

Steps Forward Pass Gradient Calculation
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TinyFoA-V-BA-BW
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al = Blhl where Bl is a fixed random matrix

Table 5: The formulation of forward pass and gradient calculation for various algorithms, where �l is the ReLU activation function,
h0 is the input x. � is the element-wise product and ⌦ is the Kronecker Product. For parameters update, W l = W l � ⌘�W l

and bl = bl � ⌘�bl, where ⌘ is the learning rate.



C The Derivation and Proof for Gradient and Parameters Update of TinyFoA
Let us consider a DNN with L layers. The input x 2 RDx⇥1 and the target y 2 RNc⇥1 are considered for training the DNN. The
activations of the hidden layer l of the DNN are denoted as hl, where h0 = x. For the hidden layer l, the activations hl 2 RDl⇥1

based on binary activations hb
l�1 2 RDl�1⇥1, binary weights W b

l 2 RDl⇥Dl�1 and biases bl 2 RDl⇥1, are presented as follows:
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where pl 2 RNc⇥1 is the probability distribution vector of al and �output is the Softmax activation function. lossl is the cross-
entropy loss for the hidden layer l, and �al =
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Moreover, considering the vertical layer-wise training, we only need to calculate the partial gradients �W (i,j)
l to reduce the

training memory overheads. We divide the input activation hl�1 2 RDl�1⇥1 and the output activation hl 2 RDl⇥1 into M

slices, respectively. The sliced input activations are denoted as h(i)
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Furthermore, we introduce the derivation for the sliced parameter (weights and biases) updates. The gradient of lossl(pl,y)

with respect to W b,(i,j)
l and b(j)l are calculated as follows:
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where � is the Hadamard Product, and ⌦ is the Kronecker Product. �0
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because �l is ReLU activation function
here.

Finally, the gradient of lossl(pl,y) with respect to W (i,j)
l is denoted as follow:
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D Hyperparameter Details
In this section, we present the details of hyperparameters, including input size, category, batch size, epochs, learning rate,
optimizer, the length of hidden layers, the activation function of hidden layers, and loss function, for all the algorithms and
various datasets evaluated in this paper.

Table 6 demonstrates the hyperparameter details for all the algorithms, which means these hyperparameters apply to all four
datasets in our experiments. Moreover, Table 7 demonstrates the hyperparameters details for these algorithms with respect to
various datasets. Table 8 demonstrates the hyperparameters details for TinyFoA-LC.

Algorithms Optimizer Length/number of Hidden Layers Activation Function Loss ⌘
BP (Rumelhart, Hinton, and Williams 1986) Adam 2000/4 ReLU CCE 1e-4

DRTP (Frenkel, Lefebvre, and Bol 2021) NAG 2000/4 Tanh BCE 1e-4
PEPITA (Dellaferrera et al. 2022) Mom 2000/3 ReLU CCE 1e-3/1e-4

FF (Hinton 2022) SGD 2000/4 ReLU BCE 1e-3
TinyFoA-FC Adam 2000/4 ReLU CCE 1e-4

Table 6: The hyperparameter details for all the algorithms.

Hyperparameters MNIST CIFAR-10 CIFAR-100 MIT-BIH
(LeCun 1998) (Krizhevsky 2009) (Krizhevsky 2009) (Mark et al. 1982)

Input Size 28x28x1 32x32x3 32x32x3 13x13x1
Category 10 10 100 5
Batchsize 100 100 100 100
Epochs 100 100 100 100

⌘ of PEPITA 1e-3 1e-3 1e-3 1e-4

Table 7: The hyperparameter details for all the algorithms with respect to various datasets.

Hyperparameters Channel kernel Stride Epochs Optimizer Activation Function Loss ⌘ Batchsize

TinyFoA-LC [16,32,64,64] 3 1 200 Adam ReLU CCE 1e-4 100

Table 8: The hyperparameter details for TinyFoA-LC.


