IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024 257

Energy-Aware Integrated Neural Architecture

Search and Partitioning for Distributed Internet
of Things (IoT)

Baichuan Huang
and Amir Aminifar

Abstract—Internet of Things (IoT) are one of the key enablers
of personalized health. However, IoT devices often have stringent
constraints in terms of resources, e.g., energy budget, and,
therefore, limited possibilities to exploit the state-of-the-art Deep
Neural Networks (DNNs). Energy-aware Neural Architecture
Search (NAS) is proposed to tackle this challenge, by exploring
lightweight DNN (DNN) architectures on a single IoT device, but
not leveraging the inherently distributed nature of IoT systems.
As a result, the joint optimization of DNN architectures and DNN
computation partitioning/offloading has not been addressed to
date. In this paper, we propose an energy-aware NAS framework
for distributed IoT, aiming to search for distributed Deep Neural
Networks (DNNs) to maximize prediction performance subjected
to Flash Memory (Flash), Random Access Memory (RAM),
and energy constraints. Our framework searches for lightweight
DNN architecture with optimized prediction performance and
its corresponding optimal computation partitioning to offload
the partial DNN from edge to fog in a joint optimization.
We evaluate our framework in the context of two common
health applications, namely, seizure detection and arrhythmia
classification, and demonstrate the effectiveness of our proposed
joint optimization framework compared to NAS benchmarks.

Index Terms—Energy-aware neural architecture search (NAS),
computation offloading, mobile edge computing, distributed com-
puting, battery-powered Internet of Things (IoT), low-power IoT,
low-power wearables, and energy optimization.

1. INTRODUCTION

ODAY, Internet of Things (IoT) devices are one of the
key enablers of real-time and long-term health monitoring
on a personalized basis [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13]. IoT devices, however, often have stringent

Received 2 July 2024; revised 2 October 2024; accepted 28 October 2024.
Date of publication 7 November 2024; date of current version 26 November
2024. This work was supported in part by the Swedish Wallenberg Al,
Autonomous Systems and Software Program (WASP) and in part by the
National Academic Infrastructure for Supercomputing in Sweden (NAISS) at
C3SE through the Swedish Research Council (VR) under Grant 2022-06725.
The review of this article was arranged by Associate Editor Pi-Cheng Hsiu.
(Corresponding author: Baichuan Huang.)

The authors are with the Department of Electrical and Infor-
mation Technology, Lund University, 22363 Lund, Sweden (e-mail:
baichuan.huang @eit.Ith.se).

Digital Object Identifier 10.1109/TCASAL2024.3493036

, Student Member, IEEE, Azra Abtahi
, Senior Member, IEEE

, Member, IEEE,

energy budgets and constrained resources to exploit modern
Deep Neural Networks (DNNs), which limits their adoption in
real-world applications.

Neural Architecture Search (NAS) has been leveraged to au-
tomatically design lightweight Deep Neural Networks (DNNs)
for 10T devices [14], [15], [16], [17]. In particular, resource-
aware NAS has been exploited to search DNN architectures,
taking into account the requirements in terms of Flash Mem-
ory (Flash), Random Access Memory (RAM), and energy on
various hardware devices [18], [19], [20]. However, current
resource-aware NAS only pays attention to individual hardware
devices such as Microcontroller (MCU) boards [21], [22], [23],
[24], [25], [26], mobile devices [16], [17], [27], server Cen-
tral Processing Units (CPUs) and Graphics Processing Cards
(GPUs) [16], [17], [20].

The classical deployment of DNNs searched by NAS is on
individual IoT devices, hence not exploiting the inherently dis-
tributed nature of IoT systems. However, DNNs can be parti-
tioned into multiple parts and offloaded to edge, fog, and cloud
in order to minimize energy consumption [28], [29], [30], [31],
[32], [33], [34]. The optimal partition point for DNN compu-
tation partitioning is decided based on the DNN architectures,
the IoT devices, and the wireless communication [28]. Previous
studies on DNN computation partitioning [28], [29], [30], [31],
[32], [33], [34], [35], [36], [371, [38], [39], [40], [41], [42], [43],
[44] are mainly limited to representative DNNs such as VGG
[45], AlexNet [46], and MobileNet [47]. These representative
DNNss are, however, not designed/optimized for distributed loT
systems with stringent energy and memory constraints, leading
to suboptimal solutions.

While both resource-aware NAS and DNN computation par-
titioning has been considered individually in the prior work,
the joint optimization of DNN architectures and DNN compu-
tation partitioning/offloading has not been addressed to date.
Considering either resource-aware NAS or DNN computation
partitioning often leads to suboptimal solutions. Moreover, con-
sidering both resource-aware NAS and DNN computation par-
titioning, but not in an integrated/co-design fashion, e.g., first
performing resource-aware NAS and after DNN computation
partitioning, will also lead to suboptimal solutions. This is
because the decisions regarding the DNN architecture are fixed
without considering the computation partitioning alternative,

2996-6647 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4010-8545
https://orcid.org/0000-0001-7672-0109
https://orcid.org/0000-0002-1673-4733
mailto:baichuan.huang@eit.lth.se

258 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

o

Energy-Aware NAS
Computation Partitioning/Offloading

W a2l

Evolutionary Resource Constraints
Process Calculation Check

Edge Fog
\. .

Extend Battery Lifetime / Minimize Total Energy Consumption

emassmsmsmsmEnEnEREn,

Distributed loT

.................

. .*

Fig. 1. Overview of our proposed energy-aware NAS framework for
distributed 0T, with joint optimization of DNN architectures and DNN
computation partitioning/offloading.

which is a greedy (as in “greedy algorithm™) strategy often
leading to suboptimal solutions.

We take three examples, as shown in Fig. 2, to further mo-
tivate the need for the joint optimization of DNN architectures
and DNN computation partitioning/offloading. These three ex-
amples are in the context of epileptic seizure detection applica-
tions [48].

e Example 1 — Standard VGGI1: Let us consider VGG11,
one of the main representative architectures in the DNN's
domain, shown in Fig. 2(a). The edge energy consumption
of VGG11 running on the edge node is 2220.821 Milli-
joule (mJ). The Flash footprint is 130570.0 Kilobyte (KB)
and the RAM footprint is 256.0 KB, which exceeds the
capacity of typical IoT devices such as STM32L476RG
(ARM Cotex-M4) and other microcontrollers based on
ARM Cortex-M family. Even if the representative VGG11
is partitioned, the total energy consumption still does not
meet the energy budget of typical IoT devices.

e Example 2 — Energy-Aware NAS: Let us now consider
energy-aware NAS to identify lightweight DNN architec-
tures, considering one IoT device. The entire DNN archi-
tecture identified by NAS is deployed on the edge node,
as shown in Fig. 2(b). When compared to the representa-
tive VGG11, the Flash footprint of Example 2 is 1.6 KB
(reduced by 81606.2 times), and the RAM footprint of
Example 2 is 8.5 KB (reduced by 30.1 times). Moreover,
the edge energy consumption is reduced by 11566.7 times
from 2220.821 mJ to 0.192 mlJ.

e Example 3 — Joint Optimization of DNN Architectures
and DNN Computation Partitioning/Offloading: Let us
next consider the same DNN architecture in Example 2,
but partitioned/offloaded on distributed IoT infrastructure.
Our proposed framework partitions the searched DNN and
offloads the partial DNN from the edge node to the fog
node. As shown in Fig. 2(c), the Flash footprint of Example
3 is 0.3 KB, which is reduced by 5.3 times compared to

@ige Input Convolutional Layer Fully Connected Layer Output

—> > > > > > > —> —> —> —> —>

Flash: 130570.0 KB RAM:256.0 KB Accuracy: 78.7% “)

\

(a) Example 1: edge energy consumption is 2220.821 mJ.

Edge Flash: 1.6 KB /Edge Flash: 0.3KB '\
RAM: 8.5 KB RAM: 8.5 KB
Accuracy: 84.1% Accuracy: 84.1%
Fog
—> —> —> —> —» —> —>

(b) Example 2: edge energy
consumption is 0.192 mJ.

.
(c) Example 3: edge energy
consumption is 0.091 mJ.

Fig. 2. Motivational examples to show the demand for joint optimization
of DNN architectures and DNN computation partitioning/offloading.

Example 2. Furthermore, the edge energy consumption of
Example 3 is 0.091 mJ, which is reduced by 2.1 times
compared to Example 2. This is, essentially, because the
energy overheads of processing the final two layers on
the edge node are more than the energy overheads of
transmitting the output of the third layer between the edge
and fog nodes.

We conclude that the standard DNNs architectures consume
large amounts of energy and memory, beyond the constraints
of typical IoT devices. At the same time, considering only
energy-aware NAS or computation partitioning leads to sub-
optimal solutions. Therefore, it is essential and possible to
jointly optimize DNN architectures and DNN computation par-
titioning/offloading to reduce the energy-overheads of DNNs on
distributed IoT infrastructure.

In this article, for the first time to the best of our knowledge,
we propose an energy-aware NAS for distributed IoT, aiming
to search for DNN architecture and its corresponding optimal
computation partitioning to maximize prediction performance
subjected to the constrained resources (i.e., Flash, limited RAM,
and energy), as shown in Fig. 1. Our proposed framework
jointly optimizes (1) the DNN architectures and (2) the DNN
partitioning/offloading on the distributed IoT infrastructure in
an integrated fashion, to avoid suboptimal solutions. We evalu-
ate our framework in the context of two common health applica-
tions, namely, seizure detection and arrhythmia classification,
and demonstrate the effectiveness of our proposed joint opti-
mization framework.

Our main contributions are summarized below:

e We propose an energy-aware NAS for distributed IoT,
which aims to search for DNN architecture and its cor-
responding optimal computation partition point to max-
imize prediction performance subject to the constrained
resources. To ensure efficient search space exploration,

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: ENERGY-AWARE INTEGRATED NEURAL ARCHITECTURE SEARCH AND PARTITIONING FOR DISTRIBUTED IoT 259

we explore evolutionary frameworks (Genetic Algorithms)
and hardware-aware energy consumption models and
speed up the optimization process up to 32 times by
exploiting the parallelism provided by multi-core CPUs
and GPUs platforms. The proposed joint optimization is
not limited to Genetic Algorithms and can be seamlessly
incorporated into various NAS methods [17], [49], [50],
[511, [52], [53], [54].

e We evaluate our energy-aware NAS framework based on
two real-world medical ToT applications with wearable
technologies, namely, seizure detection [48] and arrhyth-
mia classification [55]. The accuracy of seizure detec-
tion reaches 87.3% with the edge energy consumption
of 0.375 mJ. The accuracy of arrhythmia classification
reaches 88.0% with the edge energy consumption of 0.270
mJ. Furthermore, when compared to the representative
VGGI1 [45], 8225.3 times the edge energy consumption
is saved for arrhythmia classification, and 5058.8 times the
total energy consumption is saved for seizure detection
using our proposed framework. Finally, we compare our
proposed NAS framework to NAS benchmarks includ-
ing NASNet [49] (Reinforcement Learning), DARTS [50]
(Gradient-Based), SPOS [17] (One-Shot), CNN-GA [53]
(Evolutionary Algorithms), and training-free NAS (Zero-
Shot NAS [54]), on seizure detection and arrhythmia clas-
sification. The results demonstrate that our proposed NAS
framework achieves a significantly more lightweight DNN
architecture with comparable accuracy and, in some cases,
even better accuracy.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the literature on NAS, resource-aware NAS,
and DNN computation partitioning. Next, in Section III, we pro-
pose our energy-aware NAS for distributed IoT in detail. Then,
in Section IV, we describe the experimental setup including
datasets, edge platform, and implementation details. Next, in
Section V, we experimentally evaluate our energy-aware NAS
and compare our proposed framework against several state-
of-the-art NAS benchmarks. Finally, Section VI serves as the
conclusion of this work.

II. RELATED WORK

In this section, we briefly review the literature on NAS,
resource-aware NAS, and DNN computation partitioning.

A. NAS

NAS aims to automatically design DNN architectures rather
than directly exploiting representative DNN architectures [14].
NAS techniques are typically Reinforcement Learning (RL)-
based NAS, Gradient-based NAS, and Evolutionary Algo-
rithm (EA)-based NAS. RL-based NAS methods require large
amounts of GPUs and consume major energy [15]. Gradient-
based NAS methods require building up a supernet first. The
supernet needs to be designed manually by experts [16], [17].
EA-based NAS methods, on the other hand, have attracted a
lot of attention due to their capability to explore a large num-
ber of potential architectures and the acceleration by parallel

evaluation [56]. However, classical NAS does not consider the
memory constraints and energy budget of IoT devices.

B. Resource-Aware NAS

Resource-Aware NAS focuses on searching DNNs, while
taking into consideration the resource constraints of IoT de-
vices [18], [19], [57]. In [20], a transformable architecture
search method is proposed for IoT devices. Similarly, there
are several studies on NAS for individual IoT devices [21],
[22], [23], [24], [25], [26], [27]. In [21], MCUNet aims to
design an efficient DNN on the tiny MCU by TinyNAS and
TinyEngine. In [22], a toolkit for DNN inference on MCU
is proposed. In [23], MCUNetV2 finds the imbalanced mem-
ory distribution of Convolutional Neural Network (CNN) and
proposes the patch-based inference for the memory-intensive
stage of CNN on MCU. In [24], MicroNets targets searching
the Deep Neural Networks (DNNs) for commodity MCU, but
considering the number of operations as a proxy for latency.
In [25], SpArse combines NAS with pruning for MCU. In
[26], uNAS incorporates model compression and pruning for
MCU. Furthermore, in [58] and [59], NSGA-Net and NS-
GANetV2 consider multiple objectives including the error met-
ric and computational complexity. In [60], MOEA-PS exploits
the multi-objective evolutionary algorithm considering the two
objectives of precision and execution time. In [61], [62], the
NAS under resource constraints approach can search for op-
timal network models without wasting the limited resources
available. In relation to the energy-aware NAS, in [63], the
joint optimization is over the neural architecture and quanti-
zation space, considering multiple objectives, i.e., minimizing
both the classification error and the energy consumption. In
[64], ChamNet searches the neural architectures considering
the prediction accuracy and latency/energy by efficient pre-
dictive models. In [65], MONAS jointly optimizes the pre-
diction accuracy and energy consumption by reinforcement
learning.

However, these current resource-aware NAS algorithms only
focus on individual hardware devices such as the specified
MCU boards [21], [22], [23], [24], [25], [26], mobile devices
[16], [17], [27], or server CPUs and GPUs [16], [17], [20].
Therefore, the state of the art in resource-aware NAS does not
exploit the inherently distributed nature of IoT systems.

C. DNN Computation Partitioning

DNN computation partitioning techniques offload DNNs
over distributed IoT infrastructure, from edge, to fog, and per-
haps even cloud, to satisfy the constraints of Flash, RAM and
allocated energy budget. In [28], a layer-level computation
partitioning strategy is firstly proposed to reduce latency and
save energy consumption for devices with CPUs and GPUs. In
[37], a distributed inference framework for the CPUs and GPUs
simultaneously saves energy and reduces latency on mobile de-
vices. In [8], a self-aware classification technique is introduced
to minimize energy overheads of classical machine learning
techniques by offloading complex computation to fog and/or
cloud engines. In [38], an adaptive deep learning approach is

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

260 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

applied to reduce the inference latency by dividing the compu-
tation of the entire DNN into distributed IoT systems. Over-
all, partitioning/offloading is incorporated into many mobile
edge computing systems [40], [41], [42], [43], [44]. However,
current studies [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44] only consider
representative and fixed DNNs, and do not optimize the DNN
architectures.

Therefore, joint optimization of DNN architectures and DNN
computation partitioning/offloading has not been considered to
date. Our paper proposes an energy-aware NAS for distributed
10T, jointly optimizing DNN architectures and DNN computa-
tion partitioning/offloading for the first time, to the best of our
knowledge.

III. ENERGY-AWARE NAS FOR DISTRIBUTED I0T

In this section, we describe our proposed energy-aware NAS
for distributed 10T in detail. We consider two scenarios, the edge
energy scenario and the total energy scenario, and formulate the
optimization problem subject to the constrained resources for
each of these scenarios in Section III-A. Then, we propose the
overall flow of our framework in Section III-B.

A. Problem Formulation

IoT devices have a limited energy budget and constrained
resources for long-term health monitoring. Modern represen-
tative DNNs become deeper and deeper with higher energy
consumption and memory footprint. These DNNs do not per-
fectly match the constrained memory and energy budget of IoT
devices. Although resource-aware NAS is leveraged to auto-
matically design heterogeneous DNNS, it does not make use
of the inherently distributed nature of IoT systems. Further-
more, current DNN computation partitioning techniques only
use representative DNNss, which still consume large amounts of
energy. In this paper, we jointly optimize the DNN architectures
and DNN computation partitioning/offloading, formulated as
follows:

12:2}3{ P(A, P)
st. E(A, P) < Eiimit
R(A, P) < Riimit
F(A, P) < Fiimit, ey

where the goal is to maximize the prediction performance P.
The inputs of this joint optimization problem are the limits on
energy consumption [;;,,,;+, Flash footprint Fy;,,;:, RAM foot-
print R;;.,,;+ for the specific health monitoring application and
IoT device. The outputs of the joint optimization problem are
the searched architecture A and the partition point P (P divides
A into two parts to be deployed on edge and fog nodes). The
actual energy consumption E(A, P), the actual RAM footprint
R(A, P), and the actual Flash footprint F(A, P) for the searched
architecture A and the partition point P are estimated, and
they are required to be bounded by Ey;pnit, Riimie, and Fyipnit,
respectively.

We consider two different scenarios for formulating our op-
timization problem. The first one is the edge energy scenario
where we consider the battery lifetime of edge nodes to be
constrained and the second one is the total energy scenario
where we consider the total energy consumption of distributed
IoT systems to be constrained.

In the edge energy scenario, the energy consumption of DNN
inference on edge nodes and on wireless communication, i.e.,
Ecage, are taken into consideration. The partition point P di-
vides the DNN into two parts: one partial DNN is from layer
0 to layer P (Np.p), and another is from layer P+1 to the
end layer (Np41.end). The energy consumption of the partial
DNN Nj.p on edge nodes is denoted as E°9™?. As for wireless

edge
communication, the energy consumption E¢9™"™ depends on

edge
the length of layer P, i.e., [p. The energy gonsumption on
edge nodes is denoted by E. 4y, which incorporates EZ;7™ and
Egqge > and determines its battery lifetime. We aim to search
for DNNs with the maximum prediction performance subjected

to the constraints of Flash, RAM, and allocated edge energy
budget. Hence, the optimization problem in the edge energy
scenario can be formulated as follows:

max P(A,P)
s.t]Eedge (Aa P) < Elimzt
R(A, P) S Rlzmm‘
F(A, P) < Frimit, 2
where Ecqge(A, P) =EZ7 (No.p) + EG7™ (Ip). Note that,

even in this scenario, we leverage the inherently distributed
nature of IoT infrastructure. This is because E.q4c(A, P) =
EEZZZ’ (No.p) + Egggem(l p) <]Egg’;lp (No.eng) or alternatively
Egg;”em(l p) < EZZZL (Npi1.end). That is, the energy required
for the communication of partial results to the fog is less than
running the partial network on the edge.

In the total energy scenario, the energy consumption of DNN
inference on edge nodes and fog nodes and wireless communi-
cation are taken into consideration. While the partial DNN Ny. p
runs on edge nodes, the subsequent partial DNN Np_ .c,, 4 from
layer P + 1 to the end layer runs on fog nodes. The energy
consumption on fog nodes is denoted as I s,,. We aim to search
for DNNs with the maximum prediction performance subjected
to the constraints of Flash, RAM, and allocated total energy
budget. Thus, the optimization problem in the total energy
scenario can be formulated as follows:

nf}yzg(P(A, P)
s.it. Eiotar(A, P) < Eiimie
R(Av P) S Rlzmzt
F(A, P) < Fimit, (3

where Eiota1(A, P) =Eeqge(A, P) + Efoq(A, P). Similar
to the edge energy scenario, we have E.44.(A,P)=
Egg’g’;”(]\fo;p)—i—Egzzyg’”(lp). In addition, we have E ., (.A, P)=
Efogp(NP+1:e71,d) + E?-chlm(lp). Because of the inherent
heterogeneity of the IoT infrastructure, the fog node

may be significantly more efficient, in terms of energy

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: ENERGY-AWARE INTEGRATED NEURAL ARCHITECTURE SEARCH AND PARTITIONING FOR DISTRIBUTED IoT 261

Evolutionary Process Solution Evaluation

Constraints Check Architecture Extraction

g v N\ v) N v R
arents Selection Calculate Performance
Performance on Validation
—— :
BEETETITo
Start f Stop
Random (" Crossover) Estimate Energy Final Architecture Distribution
Architectures aEasEakEs)
ST —p & Flafl:_S: Ram | L Check = \/
s L N — B
C e T L e N \ - J
Mutation Partitioning Performance
o on Test
: ¥ 5
e— \ £ 5 \e. o
\ VRN AN AN J
* Not Compleledl

Fig. 3.
iteration. The final architecture is extracted in the last step.

consumption, in the inference process than the edge node. That
is, ESO"P(Npy1.end) > E?;ZLP(NPHZEM). This, in turn, may

edge
result in]EZZZLEP(NO:P) + Ezzzlem(lP) + E;Z?p(NP—&-l:end) +
Esomm(lp) < Ezfgf (No.ena). Therefore, leveraging the

inherent heterogeneity of the IoT infrastructure can result in
major energy savings.

In this paper, our primary focus is on CNN-based models
when addressing DNNs; however, the proposed approach can
be easily extended to Fully Connected Neural Networks [66].
For instance, Fully Connected Neural Networks are a special
type of CNN where the filter size equals the input size.

B. The Overall Flow of Our Proposed Energy-Aware NAS

The overall flow of our proposed energy-aware NAS is illus-
trated in Fig. 3. To solve the proposed optimization problem in
each of the mentioned scenarios, the overall flow of our pro-
posed framework includes four steps: evolutionary process, so-
lution evaluation, constraints check, and architecture extraction.
The first three steps are performed iteratively until a desired
solution is identified. Then, the final architecture is extracted in
the last step.

1) Evolutionary Process: This step is to search the design
space of the proposed problem to identify the DNN architec-
tures. Since the design space exploration process is inherently
a combinatorial problem, here we resort to evolutionary algo-
rithms to search the design space. Initially, the architectures are
generated randomly. For the next iterations, the inputs are the
architectures of the previous generation. The outputs are the
newly evolutionary architectures. Our proposed energy-aware
NAS is based on EA [67] and Genetic Algorithm (GA) [68].
More specifically, each DNN architecture has two chromo-
somes. One chromosome is for the length of each layer, and an-
other chromosome is for the number of channels of each layer,
as shown in Fig. 4(a). Different colors represent different genes
in the corresponding search space, and the white color means 0,
i.e., skipping this layer. The maximum possible number (/) of

Overall flow of our proposed energy-aware NAS for distributed IoT comprises four main steps. The first three steps are repeated for a certain

Length Channel Exchange Change

Layery »[|+
Layers »| |+
Layers »| |+

10 HH-»HE

e O OO

(a) Architecture (b) Crossover (c) Mutation

Fig. 4. Evolutionary process with the ability of layer optimization. Each
architecture has two chromosomes: Length chromosome and Channel chro-
mosome. The number of neurons in each layer is denoted as Length and the
channel number of each layer is denoted as Channel.

DNN layers is fixed, but with the ability of layer optimization,
the final number of DNN layers may be less.

For evolving new architectures in the next generation, parent
selection with the tournament strategy is exploited for breeding.
We conduct several tournaments to breed several parents. In
each tournament, only the architecture with the highest pre-
diction performance wins and this architecture is selected as
one of the parents. The corresponding architectures are regarded
as the winners/parents and passed to Crossover and Mutation.
In Crossover as shown in Fig. 4(b), the chromosomes from
two different parents exchange the partial chromosome below
the Crossover line, which is denoted in dark blue. In Mutation
as shown in Fig. 4(c), the gene circled in red is mutated to
another gene randomly in the search space for the channel. The
Crossover and Mutation are done separately for both the length
chromosome and the channel chromosome. After Crossover and
Mutation, a new generation of architectures is obtained.

2) Solution Evaluation: This step is to evaluate each
design solution by estimating the prediction performance,
Flash footprint, RAM footprint, and energy consumption. The

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

262 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

inputs are the evolutionary architectures and the output is
the actual resource consumption considering the partitioning
point.

For each searched architecture, the prediction performance
needs to be estimated. To this end, the dataset is divided into
three parts: train data, validation data, and test data, to avoid
potential data snooping and overfitting. To estimate the predic-
tion performance of each searched architecture, we, first, train
a model for each searched architecture. Then, we evaluate this
model on the validation set to obtain the estimated prediction
performance. Moreover, in the estimation of the prediction per-
formance, half of the validation data (randomly selected as a
Bagging method) and train data are exploited to choose the
best DNN in the training process, and the remaining half of
validation data are utilized to evaluate the performance of gen-
eralization in Architecture Extraction. This mechanism, known
as Bagging, is used to reduce the chances of overfitting to the
validation data during the evolutionary process.

Next, for each searched architecture, the required amount
of resources, in terms of Flashs, RAM, and energy need to
be estimated. The static DNN weights stored in the Flash
of edge nodes are used to calculate the Flash footprint. For
calculating the RAM footprint, the activation buffer, i.e., the
maximum memory footprint of neurons between every two
successive layers is used [24]. On the other hand, although
real-time measurement of energy consumption on hardware
devices is accurate, the real-time measurement in NAS pro-
cess consumes large amounts of time and expensive labor
[69]. To ensure efficient design/search space exploration, a
prediction model for hardware-aware energy consumption at
the granularity of a single layer is proposed. Hardware devices
such as MCU and mobile devices sequentially execute each
DNN layer. Thus, the prediction model for hardware-aware
energy consumption at layer granularity is reliable to predict
the energy consumption for the entire DNN on such hardware
devices [70].

To efficiently estimate the energy overhead EZ;™ of each
searched architecture during the evolutionary process, in the
offline phase, the prediction model for hardware-aware latency
is built by sampling various DNN layers from the search space.
More specifically, to obtain the hardware-aware latency at layer
granularity, CNN and Fully Connected Network (FC) are con-
sidered. The actual latency has a nonlinear relationship with
the Floating Point Operations (FLOPs) in the search space. For
predicting the layer-wise latency of CNN and FC, surrogate
hardware-aware energy consumption models are exploited. For
latency prediction of CNN Loy v, the searched length /;,, and
the searched channel c;,, of the input layer, and the searched
length [,,+ and the searched channel c,,; of the output layer
are required. For latency prediction of FC L ¢, only /;, and
loyt are needed. Additionally, the latency of Transposed CNN
(TCNN) can be formulated based on Ly v because the TCNN
is regarded as a variant of CNN. Next, using the least-squares
method, the surrogate power consumption is estimated. Finally,
the power of DNN inference on edge nodes is measured and the
estimated energy consumption EZ77"" is the product of latency
and the corresponding power.

In addition to Ezggnep , to estimate the edge energy overheads
of each searched architecture, we also need to estimate the
energy of wireless communication between the edge and the
fog, captured by EZ57". This value, however, depends on the
partitioning point P and the output size of the layer at which
the DNN is partitioned/offloaded. Our proposed DNN com-
putation partitioning/offloading takes the searched DNN apart
and offloads the partial DNN from edge to fog according to
the optimal partition point for each input architecture. Once
the optimal partitioning point is identified, the value of the en-
ergy overheads of wireless communication EZ577 may be esti-
mated. This strategy aims to minimize the energy consumption
on edge energy consumption on the distributed IoT systems.
This sub-optimization problem to minimize E.g4.(A, P) =
Eoge (No:p) + EZG" (1p) in the edge energy scenario is for-
mulated as follows:

mgn Ecqge(A, P)

st. R(A, P) <Ryimit
F(A, P) < Fiimie, 4)

where the optimal value of partitioning point P can be obtained
using an efficient exhaustive search.

In the total energy scenario, the total energy overheads
are given by Eiotai(A, P) =Eeqge(A, P) +Efoq(A, P).
Therefore, in addition to the edge energy E.qq.(4, P), we
also need to estimate the E;‘;’;p (Npi1.eng) in a similar
fashion as in EC37 (No. p). When the fog node is significantly
more efficient than the edge node in terms of energy
consumption, partitioning/offloading the DNN architecture
from edge to fog minimizes the total energy overheads,
Etotul(Av P)= Eedge(Av P) + Eng(Aa P)= EZZZLP(NO:P) +

o (lp) + E;Z?p(]\fpﬂ;md) +E™(lp), leveraging
the inherently distributed nature of IoT systems. However,
as captured by E;uqi(A, P) above, this also depends on the
energy overheads of communication. In essence, the optimal
partitioning point has to be selected carefully in such a way
that the energy gains of offloading the partial DNN to the fog
is more than the energy overheads of communication between
the edge and the fog. The optimal value of partitioning point P
can be obtained using an efficient exhaustive search as follows,

mgn Etotal(A7P)

st. R(A, P) <Ryt
F(A, P) < Fiimit- o)

3) Constraints Check: In this step, for each searched
architecture and partitioning/offloading point, we investigate
whether the constraints w.r.t. Flash, RAM, and energy are sat-
isfied. The inputs are the searched architectures, their partition-
ing/offloading point, and their corresponding resources in terms
of Flash, RAM, and energy. The outputs are the architectures,
which are not eliminated, and their corresponding adjusted
prediction performance. We envision three scenarios:

1) Valid Solutions: If the solution (searched architecture and

its corresponding partitioning/offloading point) satisfies
all constraints, we consider the solution with its original

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: ENERGY-AWARE INTEGRATED NEURAL ARCHITECTURE SEARCH AND PARTITIONING FOR DISTRIBUTED IoT 263

fitness K, given by its prediction performance, without
any adjustment.

2) Abandoned Solutions: If the solution does not satisfy the
constraints of Flash or RAM, the corresponding architec-
ture is abandoned.

3) Invalid Solutions: If the solution satisfies the constraints
of Flash and RAM, but does not satisfy the energy budget,
the fitness value of the solution needs to be adjusted, as
discussed below.

To guide the evolutionary process towards more energy-
efficient solutions, here we propose an adjustment procedure for
the solution that satisfies the constraints of Flash and RAM, but
does not satisfy the energy budget. In essence, we penalize these
solutions to have a worse fitness than all valid solutions, but we
do not abandon them to maintain the diversity in the population.
Furthermore, the higher the energy consumption of an invalid
solution, the lower the adjusted fitness value PP ., ., should
be. This is to reduce the probability of being selected in the
parent selection process. The adjusted ﬁtnessT(prediction perfor-

o . o T Prin =Py, °
mance) is given by:]P’adjusted =P, in— Wm - (E° —
Ejimit), where E° is the energy overheads of the invalid solution
and P, . is the theoretical minimum prediction performance
for specified applications. ES, . and P,| . denote the maximum
energy consumption among all invalid solutions and the mini-
mum prediction performance of all valid solutions, respectively.

The first three steps are performed iteratively until a desired
solution is identified. Then, the best architecture identified in the
evolutionary process is extracted, as discussed in the following.

4) Architecture Extraction: This step is to extract the best
solution to be deployed on the distributed IoT infrastructure.
The inputs are the valid solutions, namely, architectures and
partitioning points, identified in the Evolutionary Process and
Solution Evaluation, respectively. The output is the best solu-
tion satisfying the constraints of Flash, RAM, and the allocated
energy budget. First, the remaining half of the validation data
are utilized to perform and choose the best solution with the
highest prediction performance that satisfies the constraints.
Once the best solution is identified, the final average prediction
performance for this solution is obtained considering the unseen
test data. This solution will be adopted to be deployed on the
distributed IoT system.

IV. EXPERIMENTAL SETUP
A. Datasets

To evaluate our energy-aware NAS framework, we consider
two real-world medical IoT applications with wearable tech-
nologies, namely, seizure detection based on the CHB-MIT
Scalp Electroencephalogram (EEG) Dataset [48] and arrhyth-
mia classification based on the MIT-BIH Arrhythmia Dataset
[55]. Both datasets in our experiments are balanced, and accu-
racy, i.e., the total number of correctly classified inputs divided
by the total number of inputs is used as the metric of prediction
performance. The datasets are divided into train data (70%),
validation data (15%), and test data (15%).

1) CHB-MIT Scalp EEG Dataset: This dataset contains 23
cases from 22 patients (5 males and 17 females) with epilepsy.

TABLE I
SEARCH SPACE AND PERFORMANCE OF OUR PREDICTION MODEL OF
HARDWARE-AWARE ENERGY CONSUMPTION

Network Input Search Space R-squared
CNN Linllowt [2048,1024,512,256,128,64,32,16,8,4] 0.99
CinlCout [4,3,2,1]
FC linllowt [2048,1024,512,256,128,64,32,16,8,4] 0.99

Only two channels (T7F7 and T8F8) are considered, to be
consistent with the wearable IoT devices for real-time seizure
monitoring [71], [72], [73], [74]. We do not consider patients
6, 14, and 16 because they have very short-lasting seizures.
A bandpass filter with a pass-band of 1-30 Hz is applied to
the raw EEG signals. The filtered signal is segmented with a
window length of 4 seconds, i.e., 1024 samples with a Z-score
standardization [75]. Finally, the EEG signals of two channels
are concatenated into 2048 dimensions, as the input of DNNs.

2) MIT-BIH Arrhythmia Dataset: This dataset encompasses
Electrocardiogram (ECG) samples from 47 different patients
with cardiovascular problems. In accordance with the AAMI
ECS57 standard [76], five different types of arrhythmias are
categorized by beat annotations. The raw data are pre-processed
by windowing, normalizing, finding local maximums, finding
ECG R-peak, and finding R-R time intervals [77]. To ensure
the same input length, we upsample each arrhythmia sample to
the length of 2048. Finally, the dataset used in our experiments
is balanced by randomly taking the same number of different
arrhythmia samples among five types.

B. Edge Platform

Our energy-aware NAS framework is tailored to resource-
constrained IoT devices such as e-Glass [71] for seizure
detection and the SmartCardia INYU wearable sensor [78]
for arrhythmia classification. For the edge nodes, the MCU
called STM32L476RG with ARM Cotex-M4 is exploited. This
MCU board has 1 Megabyte (MB) of Flash and 128 KB
of RAM and features as milliwatt-range power consumption.
STM32CUbe.Al is used to convert the written codes to C codes
for DNNs and implement DNNs on edge nodes for actual mea-
surement of latency. Furthermore, the Otii Arc power analyzer
is exploited to measure the hardware-aware power of edge
nodes.

As discussed in Section ITI-B2, to be efficient in search space
exploration, we consider a surrogate hardware-aware energy
consumption model. For the search space in our surrogate
model, as shown in Table I, the searchable length for input
layer [;,, and output layer [,,; each has 10 different values.
Especially for CNN, the searchable number of channels for
input layer c;,, and output layer c,,; each has 4 different values.
We sampled layers from the search space of all possible solu-
tions and measured the actual latency of these layers. By using
the least squares method, the surrogate hardware-aware energy
consumption model is regressed. To evaluate the relevance of
our surrogate model, we consider the Coefficient of Determi-
nation (R-squared) metric. The R-squared for both CNN and

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

FC reaches 0.99, which shows that our surrogate hardware-
aware energy consumption model is reliable. However, our
proposed framework is not restricted to this surrogate model
and, essentially, any power model may be adopted to estimate
the energy overheads of the design solutions search within our
proposed framework.

Finally, Bluetooth Low Energy (BLE) is the wireless com-
munication available on both e-Glass [71] and INYU wearable
sensor [78] for transmission because of its low energy property.
The power value of BLE is extracted from the Nordic DevZone
power estimator [79].

C. Implementation Details

Our energy-aware NAS framework is implemented based on
PyGAD (an open-source Python library for building GA) [80]
and Ray (an open-source unified compute framework for paral-
lelism) [81]. We implement the energy-aware NAS framework
on the server of 2 x 16-core Intel(R) Xeon(R) Gold 6226R
(Skylake) CPUs and 4 NVIDIA Tesla T4 GPUs, which allows
a 32-fold acceleration with the aid of parallelism.

In addition, the length of each layer in the search space is
[1024, 512,256,128, 64, 32, 16, 8, 4, 0] and the channel number
of each layer in the search space is [4, 3, 2, 1]. For training the
DNNs based on TensorFlow Keras [82], the Adam optimizer is
adopted. Moreover, for the application of seizure detection, we
set the batch size to 4 and epochs to 20. For the application
of arrhythmia classification, we set the batch size to 32 and
epochs to 20. To avoid overfitting, dropout is exploited only
in the training process and it does not change the latency and
thus, has no influence on the surrogate hardware-aware energy
consumption model.

V. EXPERIMENTAL RESULTS

In this section, we discuss the experimental results of our
proposed energy-aware NAS. First, the proposed energy-aware
NAS for the edge energy scenario is presented in Section V-A.
Then, the proposed energy-aware NAS for the total energy
scenario is presented in Section V-B. After that, the ablation
study is conducted to evaluate the performance of the layer op-
timization, the DNN computation partitioning/offloading, and
the representative DNNs compared with the DNNs searched by
our energy-aware NAS in Section V-C. Next, the comparison
between our proposed NAS framework and NAS benchmarks
is presented in Section V-D. Finally, the evolutionary process
during the training phase is demonstrated in Section V-E.

A. Edge Energy Scenario

1) Seizure Detection: Here, we investigate the performance
of the proposed energy-aware NAS in the edge energy scenario
for seizure detection considering wearable systems. Table II
shows the prediction performance (accuracy), edge energy,
Flash, and RAM for four solutions. Each solution is obtained by
one energy-aware NAS subjected to its edge energy consump-
tion limit. As the edge energy consumption E. 44, increases, the
accuracy increase gradually. The edge energy consumption of

TABLE 11
ENERGY-AWARE NAS IN THE EDGE ENERGY SCENARIO FOR SEIZURE
DETECTION (SD) AND ARRHYTHMIA CLASSIFICATION (AC)

Application Solution E.q4. (mJ) Flash (KB) RAM (KB) Accuracy(%)
SD-0 0.059 0.3 8.1 59.3
Seizure SD-1 0.091 0.3 8.5 84.1
Detection SD-2 0.212 13 9.5 86.0
SD-3 0.375 2.5 9.5 87.3
AC-0 0.065 0.6 8.1 19.9
Arrhythmia AC-1 0.096 0.1 8.2 39.5
Classification AC-2 0.253 1.2 8.5 83.8
AC-3 0.270 4.0 8.1 88.0

Flash Flash

(a) Seizure Detection

(b) Arrhythmia Classification

Fig. 5. Normalized comparison of the Flash footprint, RAM footprint, edge
energy consumption and error for seizure detection (SD-0: yellow, SD-1: blue,
SD-2: green, SD-3: red) and arrhythmia classification (AC-0: yellow, AC-1:
blue, AC-2: green, AC-3: red).

0.375 mJ (Solution SD-3) has the highest accuracy among these
four solutions. However, if Solution SD-2 is selected rather than
Solution SD-3, a comparable accuracy with a lower Flash foot-
print and a lower E. 4 is achieved. Let us define the detection
error as one minus the accuracy of seizure detection. According
to Fig. 5(a), the architecture with edge energy consumption
of 0.091 mJ (Solution SD-1), illustrated in blue color, has the
smallest area occupancy. Hence, for Flash-sensitive and energy-
sensitive [oT devices, Solution SD-1 provides a favorable trade-
off between the accuracy and resource-usage for seizure detec-
tion in the edge energy scenario.

2) Arrhythmia Classification: Next, we investigate the per-
formance of the proposed energy-aware NAS in the edge energy
scenario for arrhythmia classification considering wearable sys-
tems. Table II shows the prediction performance (accuracy),
edge energy, Flash, and RAM for four solutions, each obtained
by one energy-aware NAS subjected to its edge energy con-
sumption limit. As the edge energy consumption E.q4e in-
creases, the accuracy also increases gradually. The edge energy
consumption of 0.270 mJ (Solution AC-3) has the highest accu-
racy among these four solutions. The accuracy may be improved
with the higher edge energy but lower Flash (Solution AC-0
to Solution AC-1) or lower RAM (Solution AC-2 to Solution
AC-3). Let us define the classification error as one minus the
accuracy of arrhythmia classification. According to Fig. 5(b),
the architecture with edge energy consumption of 0.253 mJ
(Solution AC-2), illustrated in green color, has an accuracy
of 83.8% with lower Flash footprint and energy consumption
compared to Solution AC-3. Hence, for Flash-sensitive IoT

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: ENERGY-AWARE INTEGRATED NEURAL ARCHITECTURE SEARCH AND PARTITIONING FOR DISTRIBUTED IoT

265

TABLE III
ENERGY-AWARE NAS IN THE TOTAL ENERGY SCENARIO FOR SEIZURE DETECTION AND ARRHYTHMIA CLASSIFICATION CONSIDERING DIFFERENT
ENERGY WEIGHTS

Application | Factors Solution [E;,;,;(mJ) Ezgr;ep mJ) EZrmm)) Epog(m]) Accuracy(%)
SD-1 0.103 0.071 0.020 0.012 84.1
10 SD-2 0.281 0.205 0.008 0.068 86.0
SD-3 0.382 0.367 0.008 0.007 87.3
SD-1 0.151 0.071 0.020 0.060 84.1
Seizure 2 SD-2 0.552 0.205 0.008 0.339 86.0
Detection SD-3 0.410 0.367 0.008 0.035 87.3
SD-1 0.192 0.191 0.001 0 84.1
1 SD-2 0.884 0.883 0.001 0 86.0
SD-3 0.439 0.438 0.001 0 87.3
AC-1 0.168 0.055 0.041 0.072 39.5
10 AC-2 0.461 0.238 0.015 0.208 83.8
AC-3 0.730 0.249 0.021 0.460 88.0
AC-1 0.454 0.055 0.041 0.358 39.5
Arrhythmia 2 AC-2 1.294 0.238 0.015 1.041 83.8
Classification AC-3 2.569 0.249 0.021 2.299 88.0
AC-1 0.775 0.772 0.003 0 39.5
1 AC-2 2.323 2.320 0.003 0 83.8
AC-3 4.851 4.848 0.003 0 88.0

devices, Solution AC-2 is chosen as the optimized architec-
ture for arrhythmia classification in the edge energy scenario.
Otherwise, for Flash-insensitive IoT devices, Solution AC-3 is
adopted as the optimized architecture with a significantly better
prediction performance at the price of only a minor increase in
the required energy.

B. Total Energy Scenario

Different fog nodes consume different energy on the same
DNN architectures. To simulate the energy consumption on
fog nodes, we consider various energy-efficiency factors for

comp

different fog nodes (E%)"" = %). The energy-efficiency
factor captures how efficient the fog nodes are in terms of
energy consumption, when compared to the edge nodes. For
instance, an energy-efficiency factor of factor = 10 indicates
that the fog node performs the same processing 10 times more
efficiently in terms of energy, compared to the edge nodes.
Table III shows the performance of the optimization problem in
the total energy scenario considering different energy-efficiency
factors. For each energy-efficiency factor, three individual eval-
uations are conducted. Architectures from Solution SD-1, SD-
2 and SD-3 in Table II are borrowed for seizure detection.
Architectures from Solution AC-1, AC-2 and AC-3 in Table II
are borrowed for arrhythmia classification. For each solution,
the same architecture but with a different partition point is
optimized considering different energy-efficiency factors.

1) Seizure Detection: As shown in Fig. 6(a), for all
three solutions, as the energy-efficiency factor decreases from

factor =10 to factor =1, the total energy E;,; con-
sumed increases. If the energy-efficiency factor decreases from
factor =10 to factor =2, the partition point is fixed and
[E¢q4e remains the same. The blue, green, and red areas increase,
and the total energy [E;y, and the energy consumed by the
fog Eyo4 increase. However, for the energy-efficiency factor
factor =1, Eg,q is always 0 ml. This is because, for the
energy-efficiency factor factor = 1, the fog node consumes the
same energy as the edge node for the same DNN and the entire
DNN runs on the edge node. Offloading the classification out-
put makes total energy the smallest among all the partitioning
solutions.

2) Arrhythmia Classification: Similarly, as shown in
Fig. 6(b), if the energy-efficiency factor decreases from
factor =10 to factor =1, the total energy consumption
E¢otar also increases gradually. If the energy-efficiency factor
decreases from factor =10 to factor = 2, E.qq4. remains the
same because the partition point does not change. However,
the total energy E;,;,; and the energy consumed by the fog
Ef,y increase. In particular, for the energy-efficiency factor
factor =1, the searched whole DNN only runs on the edge
node. E.44. becomes higher, and E ., is always 0 mJ. In this
case, we only offload the classification output from edge to fog
to make [E;,;,; the smallest.

In summary, for fog nodes that have an energy-efficiency
factor factor > 1, our proposed energy-aware NAS generally
partitions the searched DNN and offloads the partial DNN
from edge nodes to fog nodes to reduce the total energy con-
sumption. For the fog nodes that have an energy-efficiency
factor factor <1, our framework deploys all the searched

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

266 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

E total E total
o
-
]
S
g Error «@ Eedge Error —<ﬁ Eedge
©
L.
E fog E fog
E total E total
Error| Eedge Error Eedge

Factor =2

E fog E fog
Etotal Etotal
-
Il
£
_g Error| Eedge Error Eedge
(1]
TN
E fog E fog
(a) Seizure Detection (b) Arrhythmia Classification
Fig. 6. Normalized comparison of the total energy consumption, the energy

consumption on edge nodes and fog nodes, and error for seizure detection
(SD-1: blue, SD-2: green, SD-3: red) and arrhythmia classification (AC-1:
blue, AC-2: green, AC-3: red).

DNNs on edge nodes to make the total energy consumption the
smallest.

C. Ablation Study

To show the importance of core components of our energy-
aware NAS framework, the ablation study is conducted. In
this subsection, the effectiveness of layer optimization (Sec-
tion III-B1), the DNN computation partitioning/offloading
(Section III-B2), and the comparison between the representative
DNNs and the searched DNNss are presented.

1) Layer Optimization: Our energy-aware NAS has the ca-
pacity of adjusting the number of layers. For seizure detec-
tion, the accuracy is improved from 82.8% to 87.3% if the
layer optimization is exploited. For arrhythmia classification,
the accuracy is increased from 20.2% to 88.0% if the layer
optimization is exploited.

2) DNN Computation Partitioning/Offloading: In this ex-
periment, we partition the searched DNN architecture and of-
fload the partial DNN from edge to fog. As shown in Fig. 7,
for a 6-layer DNN (Solution SD-3 in Table II), we calculate
the Flash footprint, RAM footprint, edge energy consump-

tion Ecqge (Eedge = Ezzzlep + Eggmm) for each partition point.

Specifically, at the first partition point, the input data is directly
transmitted from edge to fog. Therefore, the Flash occupies 0
Bytes (B) and the ;™" is 0 mJ. The edge energy consumption
Ecage is equal to EZG7™, which is 1.371 mJ. The consumed
resources vary at different partition points. If we increase the
partition point, the Flash footprint and E7""" increase gradually
because more parts of the searched DNN run on the edge node.
However, the RAM footprint tends to be stable because it is only
decided by the maximum memory footprint of neurons between
every two layers. The RAM footprint reaches its maximum
value at partition point 2. As for the EZG75™, it depends on the
length and the channel of the partitioned layer. As illustrated in
Fig. 7, at partition point 4, the edge energy consumption E.gg¢
reaches its minimum value.

As shown in Table IV, four DNN architectures are selected
from Table II and the comparison of saved edge energy con-
sumption is illustrated. More specifically, for seizure detection,
the edge energy consumption of Solution SD-1 “without parti-
tion” is 2.1 times that of “with partition”, and the edge energy
consumption of Solution SD-2 “without partition” is 4.2 times
that of “with partition”. For arrhythmia classification, the edge
energy consumption of Solution AC-1 “without partition” is 8.1
times the edge energy consumption of “with partition”. Simi-
larly, the edge energy consumption of Solution AC-2 “without
partition” is 9.2 times the edge energy consumption of “with
partition”.

3) Representative DNNs: Although the DNN computation
partitioning has been used in previous works [28], [29], [30],
[31], [37], [38], [39], they only partition representative DNN's
such as VGG [45]. Our proposed framework considers hetero-
geneous DNNs for specified hardware devices and distributed
IoT systems, which jointly optimizes DNN architectures and
DNN computation partitioning/offloading for the first time. The
standard VGGI11 [45] has 133 million parameters. To show
the comparison, for EEG data (seizure detection) and ECG
data (arrhythmia classification), we adopt a variant of one-
dimensional VGG11. This variant has 34 million parameters,
which is around a quarter of the standard VGG11. We consider
this variant of one-dimensional VGG11 in our ablation study.

We conduct three experiments including VGG11 without par-
tition, VGG11 with partition, and our proposed framework. The
comparison of edge energy consumption E.q4., total energy
consumption E;,.;, Flash footprint, RAM footprint, and accu-
racy are shown in Table V. For the VGG11 without partition,
the edge energy consumption is 2220.821 mJ, and the total
energy consumption is also 2220.821 mJ (the energy-efficiency
factor factor =1 is exploited herein for simplification). When
VGGI11 is exploited, the accuracy of seizure detection and
arrhythmia classification is 78.7% and 92.1%, respectively.
However, the Flash footprint is 130570.0 KB and the RAM
footprint is 256.0 KB, which exceeds the capacity of typical IoT
devices with STM32L476RG (ARM Cotex-M4) and similar
microcontrollers based on ARM Cortex-M family. Besides, for
the VGG11 with partition, the total energy consumption is still
2220.821 mJ, not satisfying the allocated energy budget of IoT
devices.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: ENERGY-AWARE INTEGRATED NEURAL ARCHITECTURE SEARCH AND PARTITIONING FOR DISTRIBUTED IoT 267

— T 13171317
) Flash = Eedge
= RAM 9728 9728 9728 9728 9728 5 eomp
< _— g edge
ng 8192 5 0.7820.493 g
g 3624 S Y E e
£ 2568 2856 5 W 0.367
= 0 192 264 2 0.165
1 2 3 4 5 6 1 2 3 4 5 6
Partition Point Partition Point
Fig. 7. Different partition points lead to different resource overheads. The sub-optimization problem minimizes the energy consumption of the same
architecture.
TABLE IV
SEARCHED DNN ARCHITECTURES AND SAVED ENERGY CONSUMPTION
Solution Length (Partition Point) Channel W/o Partition (mJ) With Partition (mJ) Application
SD-1 [2048,128,8,64,2] (3) [1,1,4,2,1] 0.192 0.091 Seizure Detection
SD-2 [2048,128,4,128,2] (3) [1,3,3,2,1] 0.884 0.212 Seizure Detection
AC-1 [2048,64,256,512,4,16,16,256,5] (2) [1,1,1,3,2,4,4,1,1] 0.775 0.096 Arrhythmia Classification
AC-2 [2048,32,8,128,256,1024,5] (3) [1,434,421] 2.323 0.253 Arrhythmia Classification
TABLE V
COMPARISON BETWEEN REPRESENTATIVE DNNS AND SEARCHED DNNS BY ENERGY-AWARE NAS
Set VGG11 Without Partition VGG11 With Partition Our Framework
etup Seizure Detection ~ Arrhythmia Classification ~ Seizure Detection ~ Arrhythmia Classification ~ Seizure Detection ~ Arrhythmia Classification
Solution A variant of one-dimensional VGG11 A variant of one-dimensional VGG11 SD-3 AC-3
Eedge(ml) 2220.821 1317 0.375 0.270
Eiotq1(m)) 2220.821 2220.821 0.439 4.851
Flash(KB) 130570.0 0.0 25 4.0
RAM(KB) 256.0 8.0 9.5 8.1
Accuracy(%) 78.7 92.1 78.7 92.1 87.3 88.0

In our proposed framework, the joint optimization aims at
optimizing the DNN architectures and DNN computation par-
titioning/offloading. When compared to the VGG11 with parti-
tion, the edge energy consumption of our proposed framework
is decreased by a factor of 3.5 times (from 1.317 mJ to 0.375
mJ). In addition, the total energy consumption of our framework
is decreased by a factor of 5058.8 times (from 2220.821 mJ
to 0.439 mJ) for seizure detection. The accuracy of seizure
detection in our framework is 87.3%, which is higher than
78.7% of VGGI11. Besides, when compared to the VGGI1
without partition, for arrhythmia classification, the edge energy
consumption of our framework is decreased by a factor of
8225.3 times (from 2220.821 mJ to 0.270 mJ). Moreover, the
total energy consumption of our framework is decreased by a
factor of 457.8 times (from 2220.821 mJ to 4.851 mJ). The
price to pay for making this trade-off, however, is a marginal
loss in terms of the accuracy of arrhythmia classification. These
results show that the joint optimization of DNN architectures
and DNN computation partitioning/offloading enables avoiding
the suboptimal DNNs for distributed [oT systems.

D. NAS Benchmarks

We have also evaluated our framework against the state-of-
the-art NAS benchmarks on the two real-world medical IoT

applications, namely, seizure detection and arrhythmia clas-
sification. In this experiment, several NAS schemes, such
as NASNet [49] (Reinforcement Learning), DARTS [50]
(Gradient-Based), SPOS [17] (One-Shot), CNN-GA [53]
(Evolutionary Algorithms), and training-free NAS (Zero-Shot
NAS [54]) were considered. All these NAS schemes solely
focus on optimizing DNN architectures, without considering
DNN computation partitioning/offloading jointly in the opti-
mization. Table VI presents the comparison between our NAS
framework and NAS benchmarks on seizure detection and ar-
rhythmia classification.'

a) NASNet [49] (Reinforcement Learning): Our NAS
framework demonstrates a marginally higher accuracy in
seizure detection, and a comparable accuracy in arrhythmia
classification, when compared against NASNet [49]. Regarding
the searched architectures’ complexity, our NAS framework
exhibits a substantial reduction, boasting 47 times fewer pa-
rameters, 273 times fewer FLOPs in seizure detection, and 51
times fewer parameters, 18 times fewer FLOPs in arrhythmia
classification, compared to NASNet [49].

INASNet [49]: https://github.com/MarSaKi/nasnet
DARTS [50]: https://github.com/quark0/darts
SPOS [17]: https://github.com/ShunLu91/Single-Path-One-Shot-NAS
CNN-GA [53]: https://github.com/Marius-Juston/AutoCNN

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

https://github.com/MarSaKi/nasnet
https://github.com/quark0/darts
https://github.com/ShunLu91/Single-Path-One-Shot-NAS
https://github.com/Marius-Juston/AutoCNN

268

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

TABLE VI
COMPARISON BETWEEN OUR NAS FRAMEWORK AND NAS BENCHMARKS

NAS T (Partitioning Seizure Detection Arrhythmia Classification
Benchmarks ypes & Offloading) Accuracy Parameters FLOPs Accuracy Parameters = FLOPs
NASNet [49] Reinforcement Learning ¢ 84.3 15.9K 4.09M 89.8 14.9K 0.55M
DARTS [50] Gradient-Based X 77.7 382K 121M 94.8 346K 15.7M

SPOS [17] One-Shot X 81.5 6923K 352M 92.9 6923K 46.9M
CNN-GA [53] Evolutionary Algorithms X 79.6 914K 1612M 91.5 3240K 1061M
Zero-Shot (#Params) [54] Evolutionary Algorithms X 86.6 2.48K 0.104M 88.9 3.79K 0.54M
Zero-Shot (#FLOPs) [54] Evolutionary Algorithms X 85.3 1.47K 0.124M 82.4 1.32K 0.62M
Ours without Partitioning Evolutionary Algorithms X 87.3 0.54K 0.017M 89.7 1.67K 0.11M
Ours (with Partitioning) Evolutionary Algorithms v 87.3 0.34K 0.015M 89.7 0.29K 0.03M

b) DARTS [50] (Gradient-Based): Our NAS framework
attains a significantly higher accuracy in seizure detection, al-
beit with a slightly lower accuracy in arrhythmia classification,
compared to DARTS [50]. In terms of complexity, we observe a
significant reduction in the parameters of our NAS framework,
decreasing by a factor of 1124 times in seizure detection, and
by a factor of 1193 times in arrhythmia classification, in com-
parison to DARTS [50]. In addition, the FLOPs of our NAS
framework remarkably decrease by a factor of 8067 times in
seizure detection, and by a factor of 523 times in arrhythmia
classification, compared to DARTS [50].

c¢) SPOS [17] (One-Shot): Our NAS framework achieves
a higher accuracy in seizure detection, and a lower accu-
racy in arrhythmia classification, in comparison to SPOS [17].
Notably, concerning parameters, our NAS framework attains
a 20362-fold decrease in seizure detection, and a 23872-
fold decrease in arrhythmia classification, compared to SPOS
[17]. Regarding FLOPs, our NAS framework demonstrates a
noteworthy 23467-fold decrease in seizure detection, and a
1563-fold decrease in arrhythmia classification, compared to
SPOS [17].

d) CNN-GA [53] (Evolutionary Algorithms): Our NAS
framework exhibits a significantly higher accuracy in seizure
detection, and a slightly lower accuracy in arrhythmia classi-
fication, compared to CNN-GA [53]. Our NAS framework at-
tains remarkable reductions in terms of architecture complexity,
featuring 2688 times fewer parameters and 107467 times fewer
FLOPs in seizure detection and 11172 times fewer parameters
and 35367 times fewer FLOPs on arrhythmia classification,
compared to CNN-GA [53].

e) Training-free NAS [83] (Zero-Shot NAS [54]): Zero-
shot NAS exploits proxies that directly predict the classifica-
tion performance of the DNN architectures without training
the search architectures. The quantitative comparison among
various proxies in Zero-Shot NAS [54] indicates that the prox-
ies quantifying the number of parameters (#Params) and the
floating point operations per second (#FLOPs) are not neces-
sarily worse than other well-designed zero-shot proxies [84],
[85], [86] in terms of the correlation between these proxies
and the real test accuracy; these proxies #Params and #FLOPs
generally achieve comparable test accuracy to other proxies,
and even better test accuracy in certain datasets. The potential
explanation for why #Params and #FLOPs work is that more

parameters capture a higher expressive capacity [87] and higher
generalization capacity [88] of the architectures. Therefore, we
choose #Params and #FLOPs as the proxies in Zero-Shot NAS
for evaluating our NAS framework.

Our NAS framework achieves higher accuracy and fewer
parameters and FLOPs in seizure detection and arrhythmia
classification, compared to Zero-Shot NAS [54]. In terms of
parameters, our NAS framework reduces the number of param-
eters by a factor of 7.3 times in seizure detection, and by a
factor of 13.1 times in arrhythmia classification, in comparison
to Zero-Shot (#Params) [54]. In terms of FLOPs, we observe
a significant reduction in the FLOPs of our NAS framework,
decreasing by a factor of 8.3 times in seizure detection, and
by a factor of 20.7 times in arrhythmia classification, in com-
parison to Zero-Shot (#FLOPs) [54]. However, Zero-Shot NAS
consumes less time and energy because they require no train-
ing. For Zero-Shot NAS with the proxy #Params, the average
consumed time for each generation is 20 seconds and 4 seconds
for seizure detection and arrhythmia classification, respectively.
For Zero-Shot NAS with the proxy #FLOPs, the average con-
sumed time for each generation is 112 seconds and 8 seconds
for seizure detection and arrhythmia classification, respectively.
Instead, our NAS framework consumes 972 seconds and 4140
seconds for seizure detection and arrhythmia classification,
respectively.

E. Evolutionary Process

To demonstrate the effectiveness of our proposed NAS frame-
work, we investigated the evolutionary process during the train-
ing phase for seizure detection and arrhythmia classification.
As illustrated in Fig. 8, 5.4 GPU hours are needed for seizure
detection and 11.5 GPU hours are needed for arrhythmia clas-
sification. Despite the cost of the training process, the relation-
ship between evolutionary validation accuracy and evolutionary
generation shows that our carefully designed joint optimization
tends to reach high accuracy in the early generation stages.
Furthermore, our proposed joint optimization is by no means
restricted to the evolutionary algorithms and can be seamlessly
adopted by other NAS schemes, such as Reinforcement Learn-
ing (RL)-based NAS [49], Gradient-based NAS [50], One-Shot
NAS [17], Meta-learning NAS [51], Bayesian Optimized NAS
[52], and Zero-Shot NAS [54], [83].

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: ENERGY-AWARE INTEGRATED NEURAL ARCHITECTURE SEARCH AND PARTITIONING FOR DISTRIBUTED IoT 269

95
s ~
s L.
S //\/\/ =
g gl S
g v 3
< 2"
85
g g 91
g4 T o
kel °
T T 89
(] o
s =
82 88

2th 4th 6th 8th 10th 12th 14th 16th 18th 20th
07h 1.2h 1.8h 23h 2.8h 3.3h 3.8h 43h 49h 5.4h

h 2th 3th 4th Sth 6th 7th 8th 9th 10th
11h 20h 29h 39h 49h 62h 7.5 8.8h 10.1h 11.5n

(a) Seizure Detection (b) Arrhythmia Classification

Fig. 8. Evolutionary validation accuracy vs. evolutionary generation in the
training phase.

VI. CONCLUSION

In this paper, we propose an energy-aware NAS for dis-
tributed IoT, which searches for DNNs with the optimized
prediction performance subjected to constrained resources. Our
framework jointly optimizes DNN architectures and DNN com-
putation partitioning/offloading for the first time. We have
evaluated our energy-aware NAS framework based on two
real-world medical IoT applications with wearable technolo-
gies, namely, seizure detection [48] and arrhythmia classifica-
tion [55]. The evaluation results show that with our proposed
energy-aware NAS, the accuracy of seizure detection reaches
87.3% with the edge energy consumption of 0.375 mJ. The
accuracy of arrhythmia classification reaches 88.0% with the
edge energy consumption of 0.270 mJ. In addition, our frame-
work decreases the edge energy consumption by 8225.3 times
and the total energy consumption by 5058.8 times compared
to the representative VGG11. Furthermore, compared to NAS
benchmarks, our proposed NAS framework achieves a more
lightweight DNN architecture while maintaining accuracy lev-
els comparable. Finally, our proposed NAS framework can be
seamlessly incorporated into other NAS methods [17], [49],
[50], [51], [52], [53], [54], enhancing its adaptability and ver-
satility. Our framework is orthogonal to NAS acceleration [89],
on-device learning [90], compact search space design [47],
[91], [92], DNNs compression [93], [94], [95], and can be
combined and powered by these techniques to make the design
space exploration faster, DNNs more compact, and energy more
efficient.

REFERENCES

[1] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and K.
Mankodiya, “Towards fog-driven IoT eHealth: Promises and challenges
of IoT in medicine and healthcare,” Future Gener. Comput. Syst., vol. 78,
pp. 659-676, 2018.

[2] D. Sopic, A. Aminifar, A. Aminifar, and D. Atienza, “Real-time event-
driven classification technique for early detection and prevention of
myocardial infarction on wearable systems,” [EEE Trans. Biomed.
Circuits Syst., vol. 12, no. 5, pp. 982-992, Oct. 2018.

[3] J. Wannenburg and R. Malekian, “Body sensor network for mobile
health monitoring, a diagnosis and anticipating system,” IEEE Sensors
J., vol. 15, no. 12, pp. 6839-6852, Dec. 2015.

[4] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and
H. Tenhunen, “Fog computing in healthcare Internet of Things: A case
study on ECG feature extraction,” in Proc. IEEE Int. Conf. Comput. Inf.
Technol.; Ubiquitous Comput. Commun.; Dependable, Autonomic Secure
Comput.; Pervasive Intell. Comput., Piscataway, NJ, USA: IEEE, 2015,
pp. 356-363.

[5] T. N. Gia et al.,, “Low-cost fog-assisted health-care IoT system with
energy-efficient sensor nodes,” in Proc. 13th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Piscataway, NJ, USA: IEEE, 2017,
pp. 1765-1770.

[6] A. M. Rahmani et al., “Exploiting smart e-health gateways at the edge
of healthcare Internet-of-Things: A fog computing approach,” Future
Gener. Comput. Syst., vol. 78, pp. 641-658, 2018.

[7] P. Perego, Device for mHealth. Cham: Springer International Publishing,
2019, pp. 87-99. [Online]. Available: https://doi.org/10.1007/978-3-
030-02182-5_6

[8] F. Forooghifar, A. Aminifar, and D. Atienza, “Resource-aware dis-
tributed epilepsy monitoring using self-awareness from edge to cloud,”
IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1338-1350,
Dec. 2019.

[9] E. De Giovanni, A. A. ValdEs, M. PeOn-QuirOs, A. Aminifar, and D.
Atienza, “Real-time personalized atrial fibrillation prediction on multi-
core wearable sensors,” IEEE Trans. Emerg. Topics Comput., vol. 9,
no. 4, pp. 1654-1666, Oct.—Dec. 2021.

[10] R. Zanetti, A. Arza, A. Aminifar, and D. Atienza, “Real-time EEG-

based cognitive workload monitoring on wearable devices,” IEEE Trans.

Biomed. Eng., vol. 69, no. 1, pp. 265-277, Jan. 2022.

S. Baghersalimi, T. Teijeiro, D. Atienza, and A. Aminifar, “Personalized

real-time federated learning for epileptic seizure detection,” /EEE J.

Biomed. Health Inform., vol. 26, no. 2, pp. 898-909, Feb. 2022.

S. Baghersalimi, T. Teijeiro, A. Aminifar, and D. Atienza, “Decentralized

federated learning for epileptic seizures detection in low-power wearable

systems,” IEEE Trans. Mobile Comput., vol. 23, no. 5, pp. 6392-6407,

May 2024.

[13] A. Aminifar, M. Shokri, and A. Aminifar, “Privacy-preserving edge

federated learning for intelligent mobile-health systems,” Future Gener.

Comput. Syst., vol. 161, pp. 625-637, 2024. [Online]. Available: https://

www.sciencedirect.com/science/article/pii/S0167739X24003972

Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey

on evolutionary neural architecture search,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 34, no. 2, pp. 550-570, Feb. 2023.

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Int. Res., vol. 4, no. 1, pp. 237-285,
May 1996.

[16] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” in Proc. Int. Conf. Learn. Repre-
sent., 2018.

[17] Z. Guo et al., “Single path one-shot neural architecture search with
uniform sampling,” in Proc. 16th Eur. Conf. Comput. Vis. (ECCV),
Glasgow, U.K., Part XVI, 16. Heidelberg, Germany: Springer, Aug.
23-28, 2020, pp. 544-560.

[18] H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,

and N. Wang, “A comprehensive survey on hardware-aware neural

architecture search,” Ph.D. dissertation, LAMIH, Valenciennes, France:

Université Polytechnique des Hauts-de-France, 2021.

K. T. Chitty-Venkata and A. K. Somani, “Neural architecture search

survey: A hardware perspective,” ACM Comp. Surv., vol. 55, no. 4, pp.

1-36, Nov. 2022. [Online]. Available: https://doi.org/10.1145/3524500

Y. Jiang, X. Wang, and W. Zhu, “Hardware-aware transformable ar-

chitecture search with efficient search space,” in Proc. IEEE Int. Conf.

Multimedia Expo (ICME), Piscataway, NJ, USA: IEEE, 2020, pp. 1-6.

[21] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han,
“MCUNet: Tiny deep learning on IoT devices,” in Proc. Adv.
Neural Inf. Process. Syst., H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Red Hook,
NY, USA: Curran Associates, Inc., 2020, pp. 11711-11722.
Accessed: Oct. 10, 2024. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2020/file/86c51678350£656dcc7f490a43946
ee5-Paper.pdf

[22] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “FANN-on-MCU: An
open-source toolkit for energy-efficient neural network inference at the
edge of the Internet of Things,” IEEE Internet Things J., vol. 7, no. 5,
pp. 4403-4417, May 2020.

[23] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-
efficient patch-based inference for tiny deep learning,” in Proc.
Adv. Neural Inf. Process. Syst., M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Red
Hook, NY, USA: Curran Associates, Inc., 2021, pp. 2346-2358.
Accessed: Oct. 10, 2024. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2021/file/1371bccec2447b5aa6d96d2a540fb
401-Paper.pdf

[11]

[12]

[14]

[19]

[20]

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/978-3-030-02182-5_6
https://doi.org/10.1007/978-3-030-02182-5_6
https://www.sciencedirect.com/science/article/pii/S0167739X24003972
https://www.sciencedirect.com/science/article/pii/S0167739X24003972
https://doi.org/10.1145/3524500
https://proceedings.neurips.cc/paper_files/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf

270

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

C. Banbury et al., “MicroNets: Neural network architectures for deploy-
ing TinyML applications on commodity microcontrollers,” Proc. Mach.
Learn. Syst., vol. 3, pp. 517-532, 2021.

I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, “Sparse: Sparse
architecture search for CNNs on resource-constrained microcontrollers,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 4977-4989.
E. Liberis, L. Dudziak, and N. D. Lane, “uNAS: Constrained neural
architecture search for microcontrollers,” in Proc. 1st Workshop Mach.
Learn. Syst., 2021, pp. 70-79.

B. Wu et al., “FBNet: Hardware-aware efficient ConvNet design via
differentiable neural architecture search,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2019, pp. 10726-10734.

Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615-629, 2017.

E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learn-
ing model co-inference with device-edge synergy,” in Proc. Workshop
Mobile Edge Commun., 2018, pp. 31-36.

A. E. Eshratifar and M. Pedram, “Energy and performance efficient
computation offloading for deep neural networks in a mobile cloud
computing environment,” in Proc. Great Lakes Symp. VLSI, 2018,
pp. 111-116.

A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Trans. Mobile Comput., vol. 20, no. 2,
pp. 565-576, Feb. 2021.

Y. Liu, Q. Chen, G. Liu, H. Liu, and Q. Yang, “EcoSense: A hardware
approach to on-demand sensing in the Internet of Things,” [EEE
Commun. Mag., vol. 54, no. 12, pp. 37-43, Dec. 2016.

F. Firouzi, B. Farahani, and A. Marinsek, “The convergence and inter-
play of edge, fog, and cloud in the Al-driven Internet of Things (IoT),”
Inf. Syst., vol. 107, 2022, Art. no. 101840.

F. Firouzi, B. Farahani, E. Panahi, and M. Barzegari, “Task offloading
for edge-fog-cloud interplay in the healthcare Internet of Things (IoT),”
in Proc. IEEE Int. Conf. Omni-Layer Intell. Syst. (COINS), Piscataway,
NJ, USA: IEEE, 2021, pp. 1-8.

J. Zhang, J. Wang, Z. Yuan, W. Zhang, and L. Liu, “Offloading demand
prediction-driven latency-aware resource reservation in edge networks,”
IEEE Internet Things J., vol. 10, no. 15, pp. 1382613836, Aug. 2023.
H. Ma, R. Li, X. Zhang, Z. Zhou, and X. Chen, “Reliability-aware online
scheduling for DNN inference tasks in mobile edge computing,” /EEE
Internet Things J., vol. 10, no. 13, pp. 11453-11464, Jul. 2023.

F. Jia et al., “CoDL: Efficient CPU-GPU co-execution for deep learning
inference on mobile devices,” in Proc. 20th Annu. Int. Conf. Mobile
Syst., Appl. Services, New York, NY, USA: ACM, 2022, pp. 209-221.
G. Liu et al., “An adaptive DNN inference acceleration framework with
end—edge—cloud collaborative computing,” Future Gener. Comput. Syst.,
vol. 140, pp. 422-435, 2023.

X. Liu and A. G. Richardson, “Edge deep learning for neural implants: A
case study of seizure detection and prediction,” J. Neural Eng., vol. 18,
no. 4, 2021, Art. no. 046034.

X. Dai, Z. Xiao, H. Jiang, and J. C. S. Lui, “UAV-assisted task offloading
in vehicular edge computing networks,” IEEE Trans. Mobile Comput.,
vol. 23, no. 4, pp. 2520-2534, Apr. 2024.

H. Jiang, X. Dai, Z. Xiao, and A. Iyengar, “Joint task offloading
and resource allocation for energy-constrained mobile edge computing,”
IEEE Trans. Mobile Comput., vol. 22, no. 7, pp. 4000—4015, Jul. 2023.
L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581-2593, Nov. 2020.

M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Trans. Mobile
Comput., vol. 21, no. 6, pp. 1985-1997, Jun. 2022.

W. Fan et al., “Collaborative service placement, task scheduling, and
resource allocation for task offloading with edge-cloud cooperation,”
1IEEE Trans. Mobile Comput., vol. 23, no. 1, pp. 238-256, Jan. 2024.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR). San Diego, CA, USA: Computational and Biological Learning
Society, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, 2017.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

A. H. Shoeb, “Application of machine learning to epileptic seizure onset
detection and treatment,” Ph.D. dissertation, MIT Press, Cambridge,
MA, USA, 2009.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 8697-8710.

H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in Proc. Int. Conf. Learn. Represent., 2018.

J. Wang, J. Wu, H. Bai, and J. Cheng, “M-NAS: Meta neural ar-
chitecture search,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 04,
pp. 6186—-6193, Apr. 2020. [Online]. Available: https://ojs.aaai.org/index.
php/AAAl/article/view/6084

C. White, W. Neiswanger, and Y. Savani, “BANANAS: Bayesian op-
timization with neural architectures for neural architecture search,” in
Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, 2021, pp. 10293-10301.
Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically design-
ing CNN architectures using the genetic algorithm for image classifica-
tion,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840-3854, Sep. 2020.
G. Li, D. Hoang, K. Bhardwaj, M. Lin, Z. Wang, and R. Marculescu,
“Zero-shot neural architecture search: Challenges, solutions, and
opportunities,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12,
pp. 7618-7635, Dec. 2024.

G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45-50,
May/Jun. 2001.

E. Real et al., “Large-scale evolution of image classifiers,” in Proc. Int.
Conf. Mach. Learn., PMLR, 2017, pp. 2902-2911.

A. Burrello, M. Risso, B. A. Motetti, E. Macii, L. Benini, and D. J.
Pagliari, “Enhancing neural architecture search with multiple hardware
constraints for deep learning model deployment on Tiny IoT devices,”
IEEE Trans. Emerg. Topics Comput., vol. 12, no. 3, pp. 780-794,
Jul.—Sep. 2024.

Z. Lu et al., “NSGA-Net: Neural architecture search using multi-
objective genetic algorithm,” in Proc. Genetic Evol. Comput. Conf.,
2019, pp. 419-427.

Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti,
“NSGANetV2: Evolutionary multi-objective surrogate-assisted neural
architecture search,” in Proc. 16th Eur. Conf. Comput. Vis. (ECCV),
Glasgow, U.K., Part I, 16. Heidelberg, Germany: Springer, Aug. 23-28,
2020, pp. 35-51.

Y. Xue, C. Chen, and A. Stowik, “Neural architecture search based on
a multi-objective evolutionary algorithm with probability stack,” IEEE
Trans. Evol. Comput., vol. 27, no. 4, pp. 778-786, Aug. 2023.

S. Li, Y. Sun, G. G. Yen, and M. Zhang, “Automatic design of
convolutional neural network architectures under resource constraints,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 3832-3846,
Aug. 2023.

B. Lyu, H. Yuan, L. Lu, and Y. Zhang, “Resource-constrained neural
architecture search on edge devices,” IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 1, pp. 134-142, Jan./Feb. 2022.

C. Gong, Z. Jiang, D. Wang, Y. Lin, Q. Liu, and D. Z. Pan,
“Mixed precision neural architecture search for energy efficient deep
learning,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD),
Piscataway, NJ, USA: IEEE, 2019, pp. 1-7.

X. Dai et al., “ChamNet: Towards efficient network design through
platform-aware model adaptation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2019, pp. 11390-11399.

C.-H. Hsu et al., “MONAS: Multi-objective neural architecture search
using reinforcement learning,” 2018, arXiv:1806.10332.

F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6,
p. 386, 1958.

P. A. Vikhar, “Evolutionary algorithms: A critical review and its future
prospects,” in Proc. Int. Conf. Global Trends Signal Process., Inf.
Comput. Commun. (ICGTSPICC), Piscataway, NJ, USA: IEEE, 2016,
pp. 261-265.

M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

D. Velasco-Montero, J. Fernandez-Berni, R. Carmona-Galdn, and A.
Rodriguez-Vazquez, “PreVIous: A methodology for prediction of visual
inference performance on IoT devices,” IEEE Internet Things J., vol. 7,
no. 10, pp. 9227-9240, Oct. 2020.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

https://ojs.aaai.org/index.php/AAAI/article/view/6084
https://ojs.aaai.org/index.php/AAAI/article/view/6084

HUANG et al.: ENERGY-AWARE INTEGRATED NEURAL ARCHITECTURE SEARCH AND PARTITIONING FOR DISTRIBUTED IoT

[70]

[71]

[72]

[73

[t

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

H. Cai et al., “Enable deep learning on mobile devices: Methods,
systems, and applications,” ACM Trans. Des. Automat. Electron. Syst.
(TODAES), vol. 27, no. 3, pp. 1-50, 2022.

D. Sopic, A. Aminifar, and D. Atienza, “e-Glass: A wearable system
for real-time detection of epileptic seizures,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Piscataway, NJ, USA: IEEE, 2018, pp. 1-5.

B. Huang, R. Zanetti, A. Abtahi, D. Atienza, and A. Aminifar,
“EpilepsyNet: Interpretable self-supervised seizure detection for low-
power wearable systems,” in Proc. IEEE 5th Int. Conf. Artif. Intell.
Circuits Syst. (AICAS), Piscataway, NJ, USA: IEEE, 2023, pp. 1-5.

B. Huang, A. Abtahi, and A. Aminifar, “Lightweight machine learning
for seizure detection on wearable devices,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), 2023, pp. 1-2.

A. Aminifar, B. Huang, A. A. Fahliani, and A. Aminifar, “LightFF:
Lightweight inference for forward-forward algorithm,” in Proc. 27th
Eur. Conf. Artif. Intell. (ECAI), Amsterdam, The Netherlands: I0S
Press, 2024, pp. 1728-1735.

D. G. Zill, Advanced Engineering Mathematics. Boston, MA, USA:
Jones & Bartlett, 2020.

V. Arlington, “Testing and reporting performance results of cardiac
rhythm and ST segment measurement algorithms,” Rep. ANSI-AAMI
EC57, 1998.

M. Kachuee, S. Fazeli, and M. Sarrafzadeh, “ECG heartbeat
classification: A deep transferable representation,” in Proc. IEEE
Int. Conf. Healthcare Inform. (ICHI), Piscataway, NJ, USA: IEEE,
2018, pp. 443-444.

G. Surrel, A. Aminifar, F. Rincén, S. Murali, and D. Atienza, “Online
obstructive sleep apnea detection on medical wearable sensors,” I[EEE
Trans. Biomed. Circuits Syst., vol. 12, no. 4, pp. 762-773, Aug. 2018.
N. Semiconductor, “Online power profiler,” 2019. Accessed: Oct. 10,
2024. [Online]. Available: https://devzone.nordicsemi.com/power/

A. F Gad, “PyGAD: An intuitive genetic algorithm Python
library,” Multimed Tools Appl., vol. 83, pp. 58029-58042, 2024,
doi: 10.1007/s11042-023-17167-y.

P. Moritz et al.,, “Ray: A distributed framework for emerging Al
applications,” in Proc. 13th USENIX Symp. Operat. Syst. Des.
Implementation (OSDI), 2018, pp. 561-577.

M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Operat. Syst. Des. Implementation
(OSDI), vol. 16, Savannah, GA, USA, 2016, pp. 265-283.

M.-T. Wu and C.-W. Tsai, “Training-free neural architecture search: A
review,” ICT Exp., vol. 10, no. 1, pp. 213-231, 2024.

M. S. Abdelfattah, A. Mehrotra, .. Dudziak, and N. D. Lane, ‘Zero-cost
proxies for lightweight NAS,” in Proc. Int. Conf. Learn. Represent.,
2021.

N. Lee, T. Ajanthan, and P. Torr, “SNIP: Single-shot network pruning
based on connection sensitivity,” in Proc. Int. Conf. Learn. Represent.,
2018.

M. Lin et al., “Zen-NAS: A zero-shot NAS for high-performance image
recognition,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
2021, pp. 337-346.

X. Hu, L. Chu, J. Pei, W. Liu, and J. Bian, “Model complexity of deep
learning: A survey,” Knowl. Inf. Syst., vol. 63, pp. 2585-2619, 2021.
Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in
overparameterized neural networks, going beyond two layers,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 6158-6169.

Q. Ye, Y. Sun, J. Zhang, and J. Lv, “A distributed framework for
EA-based NAS,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7,
pp. 1753-1764, Jul. 2021.

H. Cai, C. Gan, L. Zhu, and S. Han, “TinyTL: Reduce memory,
not parameters for efficient on-device learning,” in Proc. 34th Int.
Conf. Neural Inf. Process. Syst. (NIPS), Red Hook, NY, USA: Curran
Associates Inc., 2020.

[91]

[92]

[93]

[94]

[95]

271

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and 0.5 MB model size,” 2016, arXiv:1602.07360.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848—6856.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and Huffman
coding,” in Proc. 4th Int. Conf. Learn. Represent. (ICLR), Conf. Track
Proc., San Juan, Puerto Rico, May 2—4, 2016.

B. Jacob et al.,, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2704-2713.

A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine
learning in 2 kB RAM for the Internet of Things,” in Proc. Int. Conf.
Mach. Learn., PMLR, 2017, pp. 1935-1944.

Baichuan Huang (Student Member, IEEE) received
the bachelor’s degree in electronic information en-
gineering and the master’s degree from the State
Key Laboratory of LIESMARS, Wuhan University,
China, in 2021. He is currently working toward the
Ph.D. degree with the Wallenberg Al, Autonomous
Systems and Software Program, Department of
Electrical and Information Technology, LTH, Lund
University, Sweden. In 2020, he worked as a Re-
search Intern with Tencent Holdings Ltd., Shanghai,
China. In 2019, he worked as a Research Intern with

the School of Computer Science and Engineering (SCSE), Nanyang Techno-
logical University (NTU), Singapore. His research interests include tinyML,
Internet of Things (IoT), mobile health, and edge artificial intelligence.

Azra Abtahi (Member, IEEE) received the Ph.D.
degree in electrical engineering from Sharif Uni-
versity of Technology, Tehran, Iran, in 2018, sup-
ported by a scholarship from Iran’s National Elites
Foundation. In 2016, she participated in a year-long
sabbatical program with Queens University, ON,
Canada. Following her doctoral studies, she served
as a Postdoctoral Fellow with Sharif University of
Technology, until 2019. She is currently working as
a WASP Postdoctoral Fellow with the Department
of Electrical and Information Technology, Lund

University. She has worked on various areas of machine learning, Internet of
Things, and signal processing. Her research interests include these subjects.

Amir Aminifar (Senior Member, IEEE) received
the Ph.D. degree from Swedish National Com-
puter Science Graduate School (CUGS), Linkoping
University, Sweden, in 2016. He is an Assistant
Professor with the Department of Electrical and
Information Technology, Lund University, Sweden.
From 2014 to 2015, he visited the University of Cal-
ifornia, Los Angeles (UCLA), USA, and Sant’ Anna
School of Advanced Studies, Italy. From 2016 to
2020, he held a Scientist position with the Institute
of Electrical Engineering, Swiss Federal Institute of

Technology (EPFL), Switzerland. His research interests include edge machine
learning for Internet of Things (IoT) systems, intelligent mobile-health and
wearable systems, and health informatics.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on December 11,2024 at 09:00:42 UTC from IEEE Xplore. Restrictions apply.

https://devzone.nordicsemi.com/power/
http://dx.doi.org/10.1007/s11042-023-17167-y

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

