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Introduction and Background
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Global Warming

NASA; https://en.wikipedia.org/wiki/Climate_change_in_Europe
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Global Warming

NASA; https://en.wikipedia.org/wiki/Climate_change_in_Europe

Europe: an average rise of 2.3°C compared to pre-industrial levels

1°C higher than the global average. 
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Energy Consumption of Training LLMs

D. Patterson, et al. Carbon emissions and large neural network training, 2021.
https://tinyml.substack.com/p/the-carbon-impact-of-large-language
Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)
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Energy Consumption of Training LLMs

D. Patterson, et al. Carbon emissions and large neural network training, 2021.
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1,216,950 lbs 15,238,333 lbs×13
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Energy Consumption of Training LLMs

D. Patterson, et al. Carbon emissions and large neural network training, 2021.
https://tinyml.substack.com/p/the-carbon-impact-of-large-language
Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

1,287 Megawatt-Hour

GPT-3 GPT-4

62,318 Megawatt-Hour

1,216,950 lbs 15,238,333 lbs×13

× 𝟒𝟖
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Biologically Plausible Alternatives

Human Brain 

(~20 Watts)
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Biologically Plausible Alternatives

Back-Propagation

(Bio-Implausible)

Human Brain 

(~20 Watts)
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Biologically Plausible Alternatives

Back-Propagation

(Bio-Implausible)

Human Brain 

(~20 Watts)

Forward-Only Algorithm

(Bio-Plausible) 
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The Process of Backpropagation

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Process of Backpropagation

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Process of Backpropagation

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.

Locking 
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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The Biological Implausibility of BP

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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Bio-FO: a Biologically-Plausible Forward-Only Algorithm
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Our Proposed Bio-FO
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Evaluation and Results
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Dataset and Application

MNIST

Grayscale 

Image

CIFAR-10(100)

RGB

Images

Vinyals, O., et al. Matching networks for one shot learning. Advances in neural information processing systems, 2016.

A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009.
R. Mark,  et al. An annotated ecg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.
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Mini-ImageNet

Subset of

ImageNet



Dataset and Application

MNIST

Grayscale 

Image

CIFAR-10(100)

RGB

Images

CHB-MIT

Electroencephalogram 

(EEG)

MIT-BIH

Electrocardiogram 

(ECG)

Real-world wearable applications:

Complexity overhead/energy consumption is a major constraint.

Vinyals, O., et al. Matching networks for one shot learning. Advances in neural information processing systems, 2016.

A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009.
R. Mark,  et al. An annotated ecg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.
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Classification Performance
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CIFAR-10 CIFAR-100 CHB-MIT MIT-BIH

Bio-FO outperforms the state-of-the-art forward-only algorithms, with 

the potential to achieve comparable performance to BP.



Memory Efficiency

Bio-FO improves the memory efficiency and has approximately 3 times 

less memory overheads when compared to BP.
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Convergence Rate (CIFAR-10)

Bio-FO enjoys faster convergence than PEPITA, and FF.
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DRTP PEPITA FF Our



Energy Efficiency

Bio-FO outperforms the state-of-the-art forward-only algorithms 

in terms of energy consumption.

<

<

<

<
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Algorithms
Energy Overheads (Wh)

CIFAR-100 CHB-MIT MIT-BIH

DRTP 131.9 6.4 317.7

PEPITA 123.9 5.9 191.0

FF 753.5 4.8 221.9

Our 37.9 3.5 121.1



Scalability (Architectures) 

Datasets
Error (%)

Our-FC Our-LC Our-CNN

MNIST 1.62 1.36 0.57

CIFAR-10 45.12 35.13 26.08

CIFAR-100 74.57 64.06 64.06

The relevance of Bio-FO with LC and CNN shows the importance of 

architectures for improving classification performance.
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Scalability (mini-ImageNet) 

Datasets
Error (%)

DRTP PEPITA FF Our BP

mini-ImageNet 94.20±0.49 91.23±0.18 93.64±0.26 67.39±0.25 53.49±0.40

Bio-FO achieves the closest classification performance to BP,

on relatively large-scale datasets such as mini-ImageNet.
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Challenge

Bio-Implausibility

Incurs

Inefficiency
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Challenge Approach Performance
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Challenge Approach Performance
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Thank you!

Welcome to Our Poster Session

A Biologically Plausible 

Forward-Only

Algorithm

Conclusion
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