

Efficient On-Device Machine Learning with a Biologically-Plausible Forward-Only Algorithm

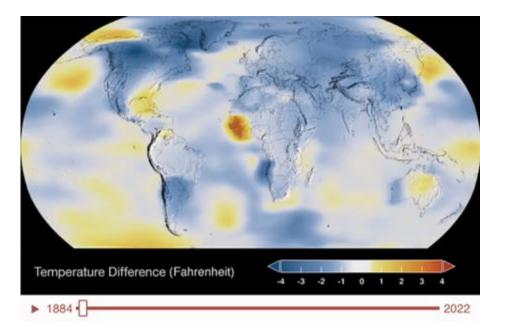
Baichuan Huang, Amir Aminifar

Department of Electrical and Information Technology, Lund University, Sweden

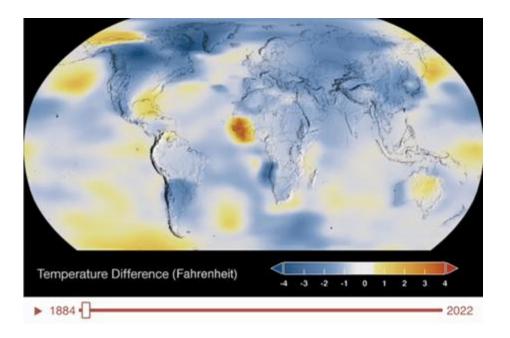
This research has been partially supported by the Swedish Wallenberg AI, Autonomous Systems and Software Program (WASP), the Swedish Research Council (VR), Swedish Foundation for Strategic Research (SSF), the ELLIIT Strategic Research Environment, and the European Union (EU).

Introduction and Background

Global Warming



Global Warming



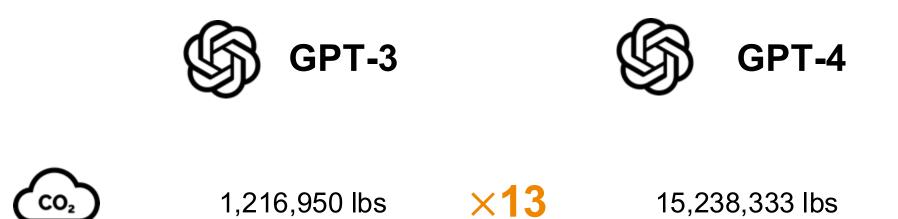
Europe: an average rise of 2.3°C compared to pre-industrial levels 1°C higher than the global average.

NASA; https://en.wikipedia.org/wiki/Climate_change_in_Europe

Energy Consumption of Training LLMs

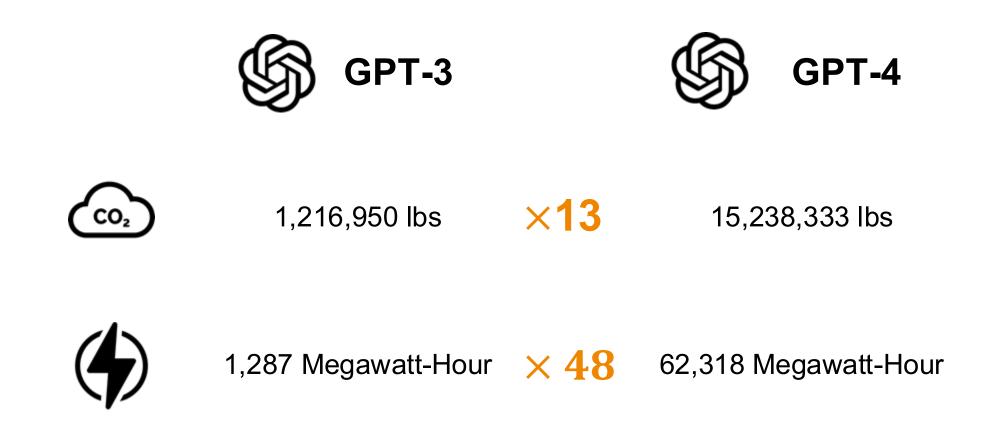
D. Patterson, et al. Carbon emissions and large neural network training, 2021. <u>https://tinyml.substack.com/p/the-carbon-impact-of-large-language</u> Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Energy Consumption of Training LLMs



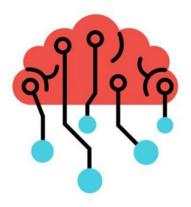
D. Patterson, et al. Carbon emissions and large neural network training, 2021. <u>https://tinyml.substack.com/p/the-carbon-impact-of-large-language</u> Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Energy Consumption of Training LLMs



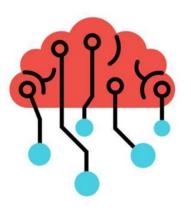
D. Patterson, et al. Carbon emissions and large neural network training, 2021. <u>https://tinyml.substack.com/p/the-carbon-impact-of-large-language</u> Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Biologically Plausible Alternatives

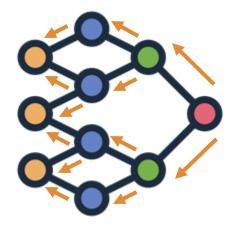


Human Brain (~20 Watts)

Biologically Plausible Alternatives

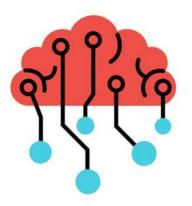


Human Brain (~20 Watts)

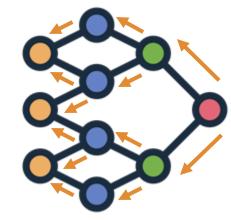


Back-Propagation (Bio-Implausible)

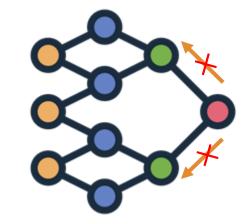
Biologically Plausible Alternatives



Human Brain (~20 Watts)

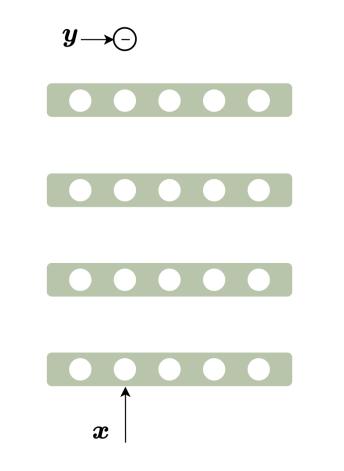


Back-Propagation (Bio-Implausible)

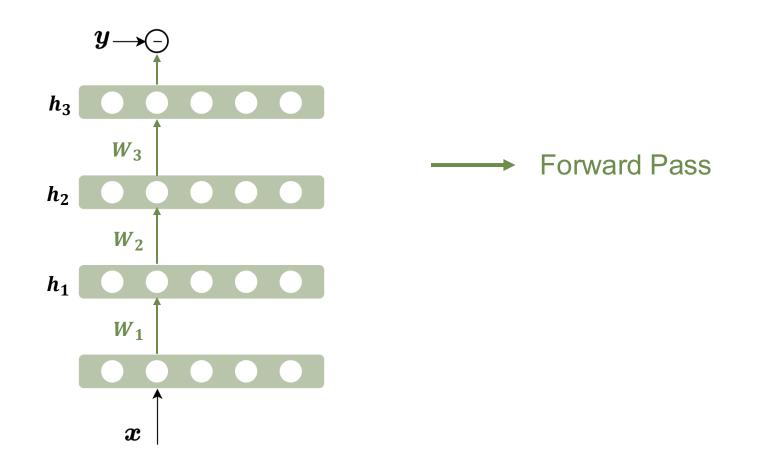


Forward-Only Algorithm (Bio-Plausible)

The Process of Backpropagation

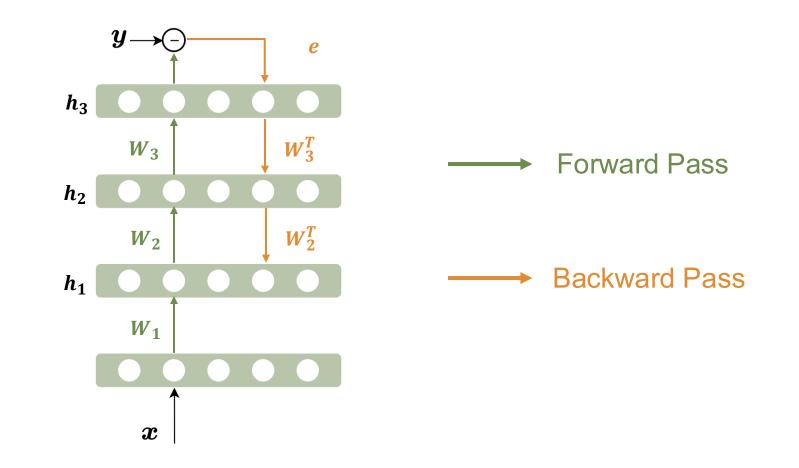


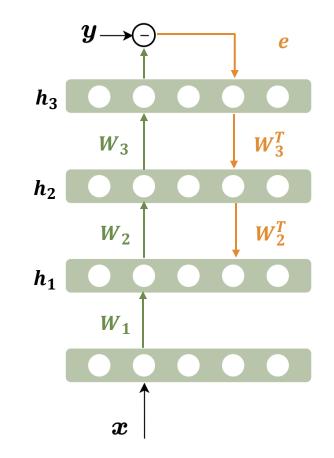
The Process of Backpropagation

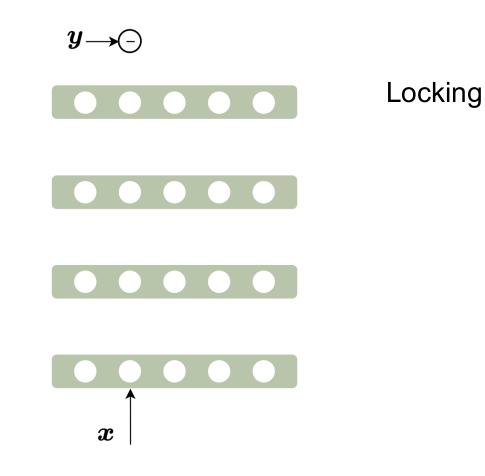


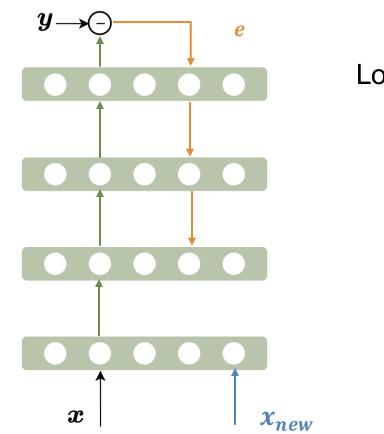
LUND UNIVERSITY

The Process of Backpropagation

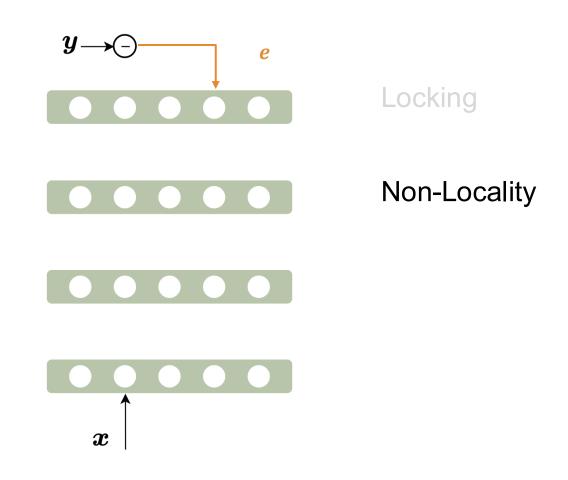


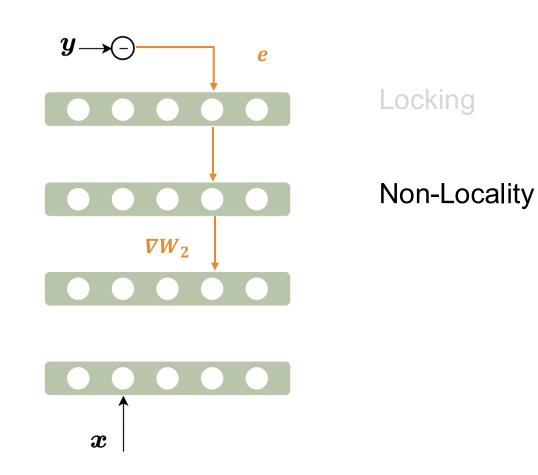


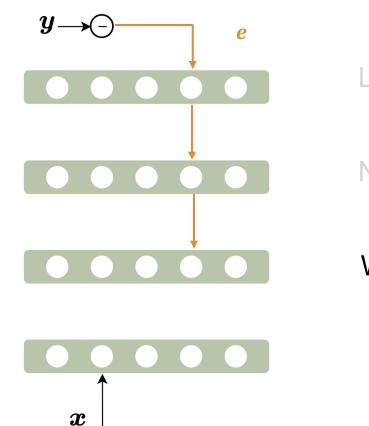




Locking



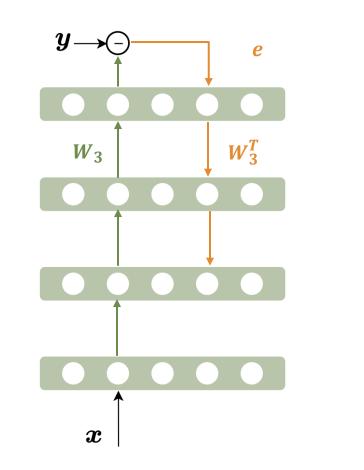




Locking

Non-Locality

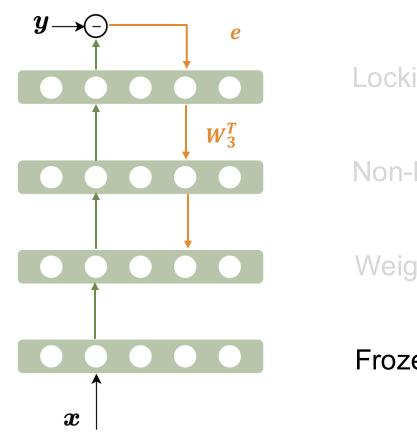
Weight Transport



Locking

Non-Locality

Weight Transport

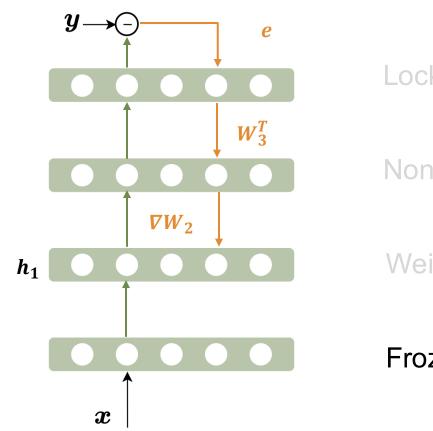


Locking

Non-Locality

Weight Transport

Frozen Activities



Locking

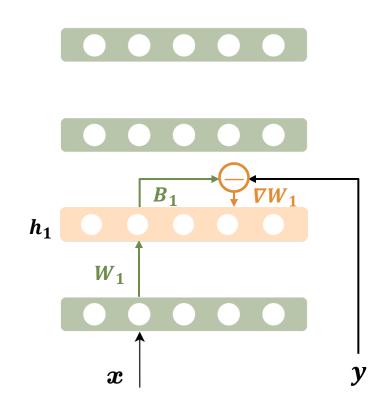
Non-Locality

Weight Transport

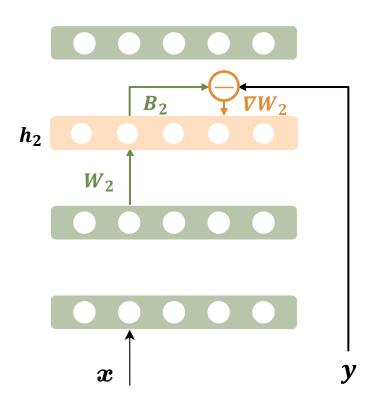
Frozen Activities

Bio-FO: a Biologically-Plausible Forward-Only Algorithm

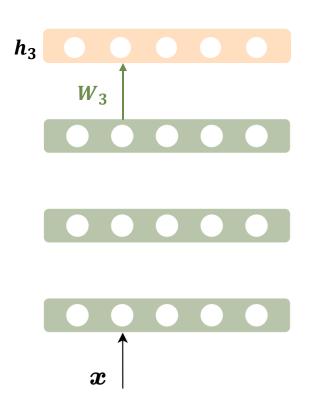
$oldsymbol{x}$

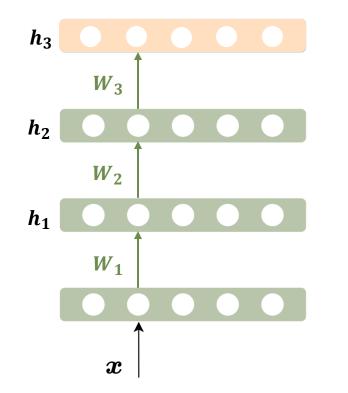


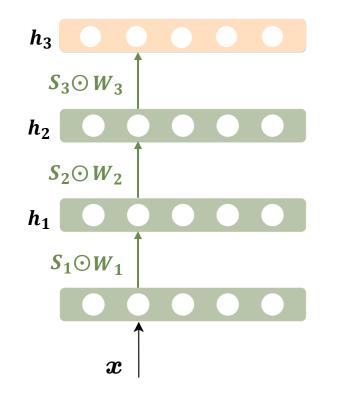
B: Fixed Random Projection



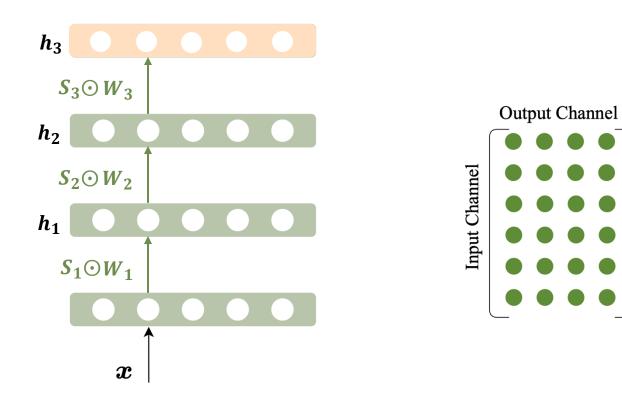
B: Fixed Random Projection



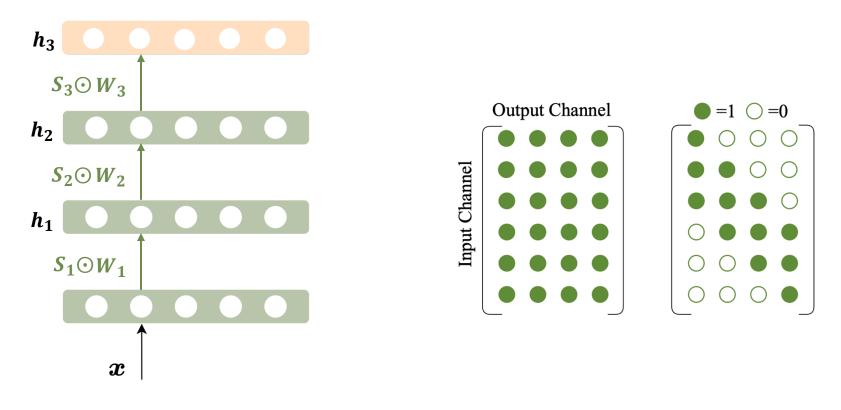


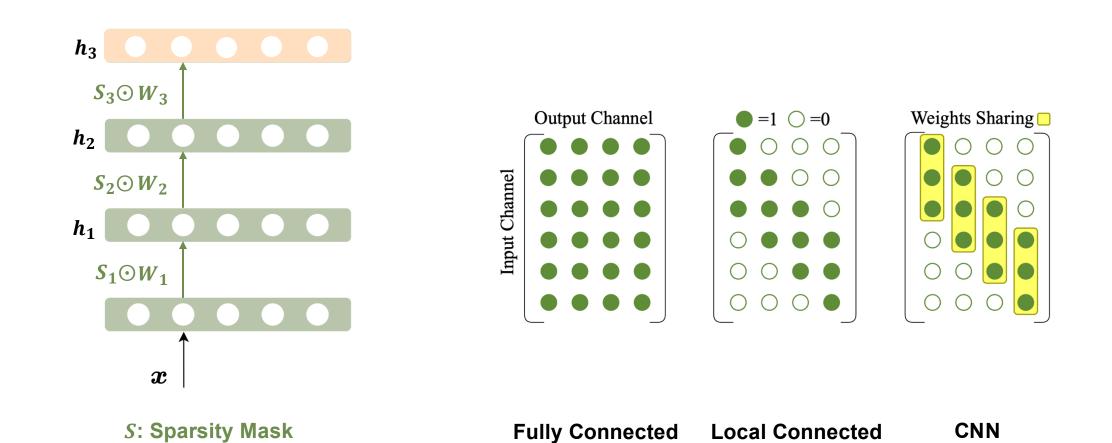


S: Sparsity Mask



S: Sparsity Mask





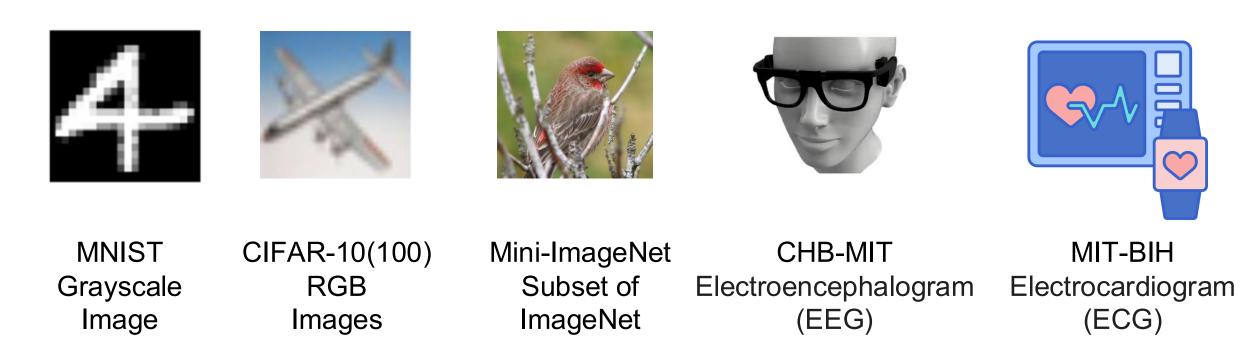
Evaluation and Results

Dataset and Application

MNIST Grayscale Image CIFAR-10(100) RGB Images Mini-ImageNet Subset of ImageNet

Vinyals, O., et al. Matching networks for one shot learning. Advances in neural information processing systems, 2016.
A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009.
R. Mark, et al. An annotated ecg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.

Dataset and Application

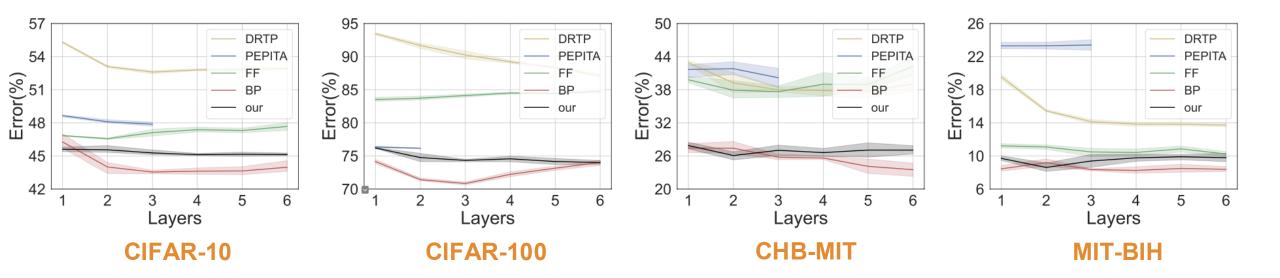


Real-world wearable applications:

Complexity overhead/energy consumption is a major constraint.

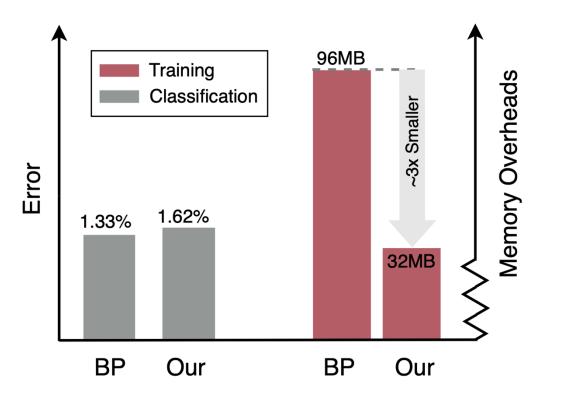
Vinyals, O., et al. Matching networks for one shot learning. Advances in neural information processing systems, 2016. A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009. R. Mark, et al. An annotated ecg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.

Classification Performance



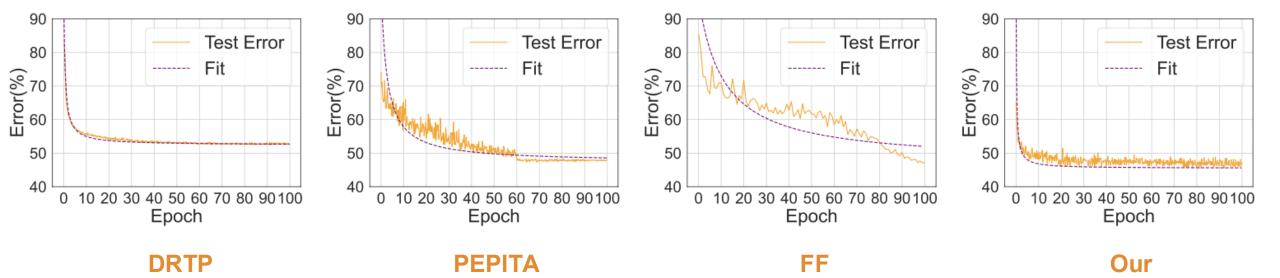
Bio-FO outperforms the state-of-the-art forward-only algorithms, with the potential to achieve comparable performance to BP.

Memory Efficiency



Bio-FO improves the memory efficiency and has approximately 3 times less memory overheads when compared to BP.

Convergence Rate (CIFAR-10)



Bio-FO enjoys faster convergence than PEPITA, and FF.

Algorithms	Energy Overheads (Wh)				
	CIFAR-100	CHB-MIT	MIT-BIH		
DRTP	131.9	6.4	317.7		
PEPITA	<u>123.9</u>	5.9	<u>191.0</u>		
FF	753.5	<u>4.8</u>	221.9		
Our	37.9	3.5	121.1		

Bio-FO outperforms the state-of-the-art forward-only algorithms in terms of energy consumption.

Datasets	Error (%)				
	Our-FC	Our-LC	Our-CNN		
MNIST	1.62	<u>1.36</u>	0.57		
CIFAR-10	45.12	<u>35.13</u>	26.08		
CIFAR-100	74.57	<u>64.06</u>	64.06		

The relevance of Bio-FO with LC and CNN shows the importance of architectures for improving classification performance.

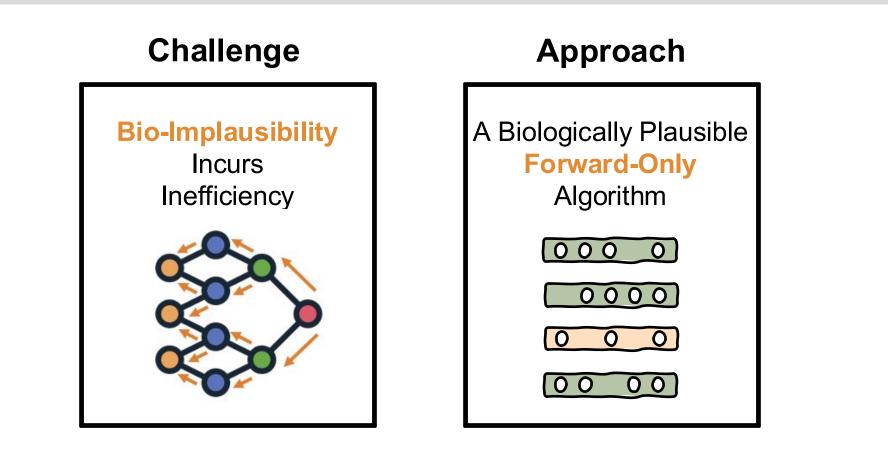
Scalability (mini-ImageNet)

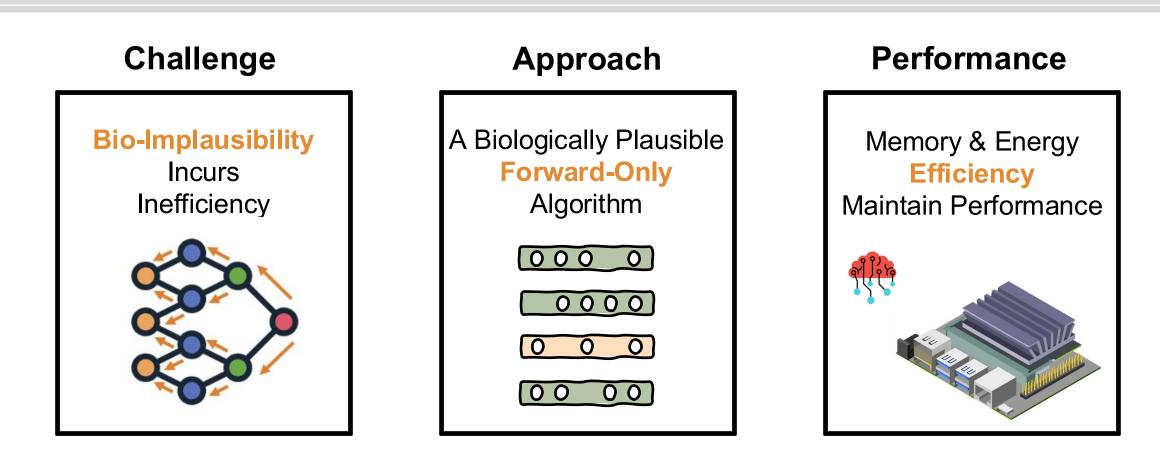
Datasets	Error (%)					
	DRTP	PEPITA	FF	Our	BP	
mini-ImageNet	$94.20{\scriptstyle \pm 0.49}$	$91.23{\scriptstyle \pm 0.18}$	$93.64{\scriptstyle \pm 0.26}$	$67.39{\scriptstyle \pm 0.25}$	$53.49{\scriptstyle \pm 0.40}$	

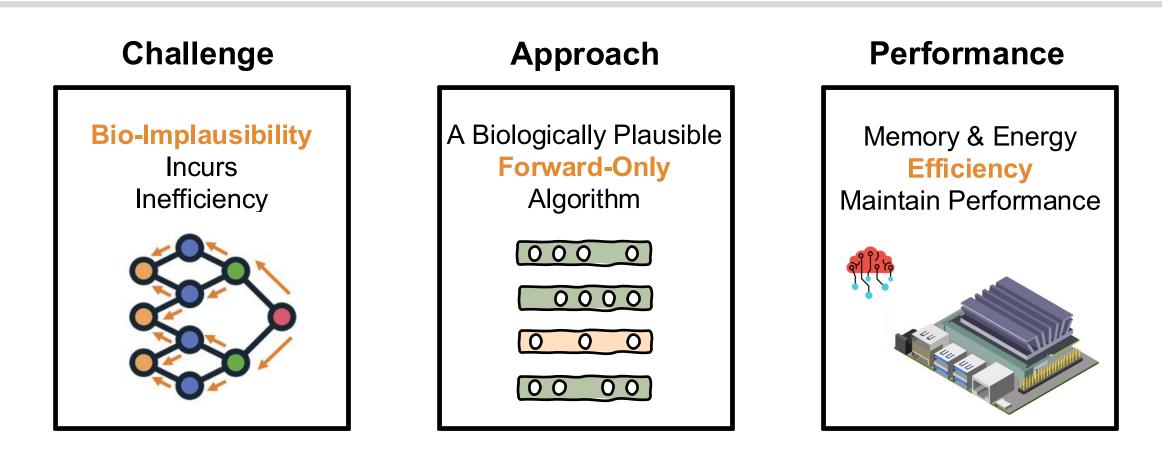
Bio-FO achieves the closest classification performance to BP, on relatively large-scale datasets such as mini-ImageNet.

Challenge

Bio-Implausibility Incurs Inefficiency







Welcome to Our Poster Session

Thank you!