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The training of the state-of-the-art Deep Neural Networks (DNNs) consumes massive amounts of energy, while the human brain learns
new tasks with remarkable efficiency. Currently, the training of DNNs relies almost exclusively on Backpropagation (BP) [1].
However, BP faces criticism due to its biologically implausible nature (such as weight transport [2], non-locality [3], update
locking [4], and frozen activities [5]), underscoring the significant disparity in performance and energy efficiency between DNNs and
the human brain. The biologically plausible forward-only algorithms, without resorting to the BP, is explorated to bridge the existing

performance—efficiency gap between the DNNs and the cortex.

Method

In this paper, we propose an efficient on-device learning
algorithm, based on the biologically-plausible forward-only
algorithm, called Bio-FO. Bio-FO targets the previously
mentioned biological implausibility issues, which are only
partially solved by the state-of-the-art forward-only algorithms
(shown in Fig. 1). Moreover, Bio-FO can be flexibly extended to
common networks and relatively large-scale datasets.

Our proposed training scheme performs locally, without the
need for non-local information/global error. For each layer’s
activations, an auxiliary classifier with a fixed random matrix is e
employed to project the activations to the output logits.
Therefore, the weights between each two connected layers are

updated as soon as the input to the layer (i.e., the activation of 0
the previous layer) is available. For each layer's weights, a &0
sparsity mask Is introduced to allow extensions to common 70
networks such as the fully connected network, the locally £ 60
connected network, and the convolutional neural network. Our 50
proposed sparse local-training scheme supports parallel and 40

asynchronous updates, incurring resource efficiency.
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(c) Forward-Forward (FF)

Bio-FO collectively achieves a lower error compared to DRTP,
PEPITA, and FF across different number of layers, for example
in Fig. 2 (a). Moreover, as shown in Fig. 2 (b-d), Bio-FO also
enjoys faster convergence than PEPITA, and FF.
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(d) Bio-FO

a. BP b. PEPITA Fig. 2: An overview of results for CIFAR-10
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? le % = Table 1 presents that Bio-FO outperforms the state-of-the-art
hs hs forward-only algorithms of DRTP, PEPITA, and FF in terms of
WgT lWBT Wg%@‘ﬁ energy consumption for training on the NVIDIA Jetson Nano. We
hs hs highlight the best and second best results.
W2T lWQT WQT—’@‘*T Algorithms CIFAR-10 | CIFAR-100 | CHB-MIT | MIT-BIH
h, hi DRTP 121.6 110.8 131.9 6.4 317.7
WlT Wlf’@‘ﬂ‘ PEPITA 89.9 91.7 123.9 5.9 191.0
FF 174 .4 211.1 753.5 4.8 221.9
w T s T wm"dT: Bio-FO 99.8 83.1 37.9 3.5 121.1
C. FF d.  Bio-FO (our) Table 1: Energy consumption for forward-only algorithms.
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Fig. 1: An overview of various training algorithms.
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