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ABSTRACT

The present Multi-view stereo (MVS) methods with super-
vised learning-based networks have an impressive perfor-
mance comparing with traditional MVS methods. However,
the ground-truth depth maps for training are hard to be ob-
tained and are within limited kinds of scenarios. In this
paper, we propose a novel unsupervised multi-metric MVS
network, named M3VSNet, for dense point cloud reconstruc-
tion without any supervision. To improve the robustness
and completeness of point cloud reconstruction, we propose a
novel multi-metric loss function that combines pixel-wise and
feature-wise loss function to learn the inherent constraints
from different perspectives of matching correspondences.
Besides, we also incorporate the normal-depth consistency
in the 3D point cloud format to improve the accuracy and
continuity of the estimated depth maps. Experimental results
show that M3VSNet establishes the state-of-the-arts unsuper-
vised method and achieves better performance than previous
supervised MVSNet on the DTU dataset and demonstrates
the powerful generalization ability on the Tanks & Temples
benchmark with effective improvement.

Index Terms— Multi-view stereo, unsupervised, multi-
metric, depth map

1. INTRODUCTION

Multi-view stereo (MVS) aims to reconstruct the 3D dense
point cloud from multi-view images, which has various ap-
plications in augmented reality, virtual reality and robotics,
etc. [1, 2]. Big progress has been made in the traditional
methods through the hand-crafted features (e.g. NCC) to cal-
culate the matching correspondences [3]. Though, the effi-
cient and robust methods of MVS in the large-scale environ-
ments are still the challenging tasks [4]. Recently, deep learn-
ing is introduced to relieve this limitation. The supervised
learning-based MVS methods achieve significant progress es-
pecially improving the efficiency and completeness of dense
point cloud reconstruction [5]. These learning-based meth-
ods learn and infer the information to handle matching am-
biguity which is hard to be obtained by stereo correspon-
dences. However, these supervised learning-based methods
strongly depend on the training datasets with ground-truth

The code is available at https://github.com/whubaichuan/M3VSNet

depth maps, which have limited kinds of scenarios and are
not easy to be available. Thus it is a big hurdle and may lead
to bad generalization ability in different complex scenarios
[6]. Furthermore, the robustness and completeness of dense
point cloud reconstruction still have a lot of room to be im-
proved. The learning-based methods are mainly based on the
pixel-wise level, which will cause incorrect matching corre-
spondences with low robustness [7]. Because for two identi-
cal images, the difference could be huge as long as pixel offset
from the perspective of pixel level. However, they are almost
the same from the perspective of perception such as feature
level. Therefore, the paper aims to the data-independence,
robustness and completeness of learning-based MVS.

In this paper, we propose a novel unsupervised multi-
metric MVS network, named M3VSNet as shown in figure
1, which could infer the depth maps for dense point cloud
reconstruction even in non-ideal environments. Most impor-
tantly, we propose a novel multi-metric loss function, namely
pixel-wise and feature-wise loss function. The key insight is
that the human visual system perceives the surrounding world
by the object features . In terms of this loss function, both the
photometric and geometric matching consistency can be well
guaranteed. Specifically, we introduce the multi-scale feature
maps from the pre-trained VGG16 network as vital clues in
the feature-wise loss. Low-level feature representations learn
more texture details while high-level features learn seman-
tic information with a large receptive field. Different level
features are the representations of different receptive fields.
Besides, to improve the accuracy and continuity of the depth
maps, we incorporate the normal-depth consistency in the
world coordinate space to constraint the local surface tangent
obtained from the estimated depth maps to be orthogonal
to the calculated normal. Therefore, the network can well
improve the robustness and accuracy of matching correspon-
dences in some challenging scenarios such as textureless,
mirror effect or reflection and texture repeat areas.

2. RELATED WORK

Many traditional methods have been proposed in this field
such as voxel-based method [8], feature points diffusion [3]
and the fusion of estimated depth maps [9]. The fusion of
estimated depth maps can decouple the reconstruction into
depth estimation and fusion. Depth estimation with monoc-
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Fig. 1. The architecture of our proposed M3VSNet.

ular video and binocular image pairs has many similarities
with the multi-view stereo here [10]. Monocular video [11]
lacks the real scale of the depth actually and binocular im-
age pairs always need to rectify the parallel two images [12].
Obstacles such as multi-view occlusion and consistency [6]
raise the bar for depth estimation of multi-view stereo than
that of monocular video and binocular image pairs. Since
Yao Yao proposed MVSNet in 2018 [13], many supervised
networks [14, 15, 16, 17] based on MVSNet have been pro-
posed. More importantly, the ground-truth depth maps are
derived from heavy labor. Dai [6] predicts the depth maps
for all views simultaneously in a symmetric way, which con-
sumes a lot of GPU memory. Additionally, Tejas [18] pro-
poses the simplified network and traditional loss designation
but an unsatisfied result. Efforts are worthy to be paid.

3. M3VSNET

3.1. Network Architecture

The basic architecture of M3VSNet consists of three parts,
namely pyramid feature aggregation, variance-based cost vol-
ume generation and 3D U-Net regularization, as shown in
figure 1. The pyramid feature aggregation extracts features
from low-level to high-level representations with contextual
information. The construction of variance-based cost volume
is based on the differentiable homography warping with the
number of different depth hypotheses D in MVSNet [13]. At
last, the initial depth is derived from the soft argmin opera-
tion with the probability volume after the regularization. The
advance architecture of M3VSNet consists of normal-depth
consistency and multi-metric loss. We incorporate the novel
normal-depth consistency to refine depth map in considera-
tion of the orthogonality between normal and local surface
tangent. More importantly, we construct multi-metric loss,
which consists of pixel-wise loss and feature-wise loss.

3.2. Normal-depth Consistency

The initial depth still contains some incorrect matching cor-
respondences with low quality. Therefore, we incorporate the
normal-depth consistency based on the orthogonality between
normal and local surface tangent [7]. Due to the orthogonal-
ity, the operation of cross-product is used. For each central
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Fig. 2. The illustration of normal-depth consistency

point pi, one set of the neighbors can be recognized as pix
and piy . If the depth Zi of pi and the intrinsics K of camera
are known, the normal Ñi can be calculated as below:

Pi = K−1Zipi (1)

Ñi =
−−−→
PiPix ×

−−−→
PiPiy (2)

The final normal estimation Ni is:

Ni =
1

8

8∑
i=1

(Ñi) (3)

In figure 2, for each pixel pi(xi, yi), the depth of the
neighbor pneighbor should be refined. Their correspond-
ing 3D points are Pi and Pneighbor. The normal of Pi
is
−→
Ni(nx, ny, nz). The depth of Pi is Zi and the depth

of Pneighbor is Zneighbor. We can get the equation
−→
N ⊥

−−−−−−−→
PiPneighbor. The relationship is apparently reasonable due to
the orthogonality and surface consistency in the local surface.

(K−1Zipi −K−1Zneighborpneighbor)(nx, ny, nz) = 0 (4)

Considering the discontinuity of normal in some edge or
irregular surface, the weight wi for the reference image Ii is
introduced. The weight is defined as below:

wi = e−α1|5Ii| (5)

The weight wi depends on the gradient between pi and
pneighbor. The final refined depth Z̃neighbor is a combination
of the weighted sum of different directions.

Z̃neighbor =
8∑
i=1

w′iZ
i
neighbor (6)

w′i ==
wi∑8
i=1 wi

(7)

3.3. Multi-metric Loss

We propose a novel multi-metric loss function by consider-
ing different perspectives of matching in feature correspon-
dence beyond pixel. The key idea embodied in multi-metric
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loss function is the photometric consistency crossing multi-
views [9]. Given the reference image Iref and source image
Isrc, the corresponding intrinsic parameters are represented
as Kref and Ksrc. Besides, the extrinsic from Iref to Isrc is
represented as T . For the pixel pi(xi, yi) in Iref , the corre-
sponding pixel p′i(x

′
i, y
′
i) in Isrc can be listed as:

p′i = KsrcT (K
−1
ref Z̃ipi) (8)

The overlapping area, named I ′src, from Iref to Isrc can
be sampled using the bilinear interpolation.

I ′src = Isrc(p
′
i) (9)

For the occlusion area, the value of the mask M in I ′src
is set to zero. Based on the prior constraint, the multi-metric
loss function L is formulated as the sum of pixel-wise loss
Lpixel and feature-wise loss Lfeature.

L =
∑

(γ1Lpixel + γ2Lfeature) (10)

3.3.1. Pixel-wise Loss

For the pixel-wise loss, we only consider the photometric con-
sistency between the reference image Iref and other source
images. There are mainly three parts of this loss function.

Firstly, the photometric loss is:

Lphoto =
1

m

m∑
i=1

((Iiref−I
′i
src)+(5Iiref−5I

′i
src))·M (11)

Where m is the sum number of valid points in the mask M .
Secondly, the loss of structure similarity (SSIM) LSSIM

is:

LSSIM =
1

m

m∑
i=1

1− S(Iiref , I
′i
src)

2
·M (12)

Thirdly, the smooth of final depth map can be operated on
the first-order domain and the second-order domain.

Lsmooth =
1

n

n∑
i=1

(e−α2|5Iiref |
∣∣∣5Z̃i∣∣∣+e−α3|52Iiref |

∣∣∣52Z̃i

∣∣∣)
(13)

Where n is the sum number of points in reference image Iref .
Finally, the total pixel-wise loss Lpixel is listed as:

Lpixel = λ1Lphoto + λ2LSSIM + λ3Lsmooth (14)

3.3.2. Feature-wise Loss

The pixel-wise loss performs mismatch errors in some chal-
lenging scenarios. Therefore, one of the main improvements
of M3VSNet is the use of feature-wise loss, which will utilize
more semantic information for matching correspondences.

Through the pre-trained VGG16 network, shown in fig-
ure 3, the reference image Iref can extract more semantic

Convolution+ReLU
Max pooling

Fully Connected+ReLU
Softmax

𝑭𝟏 𝑭𝟐 𝑭𝟑

Fig. 3. Feature-wise extraction from pre-trained VGG16

high-level information to construct the feature-wise loss func-
tion. Here, we extract the layer 8, 15 and 22, which are one
half, a quarter and one-eighth the size of the original input
images. For every feature from the VGG16, we construct the
loss based on the concept of crossing multi-views. Like sec-
tion 3.3.1, the corresponding pixel p′i in Fsrc can be available.
The matching features from Fref to Fsrc can be presented as
below:

F ′src = Fsrc(p
′
i) (15)

The loss LF is represented as below:

LF =
1

m

∑
(Fref − F ′src) ·M (16)

The final feature-wise loss function is a weighted sum of
different scale of features, which raises the robustness and
completeness of point cloud reconstruction. LF8

represents
the feature of layer 8 from pre-trained VGG16.

Lfeature = β1LF8
+ β2LF15

+ β3LF22
(17)

4. EXPERIMENTS

4.1. Performance on DTU

The DTU dataset is a multi-view stereo dataset that has 124
different scenes with 49 scans for each scene [19]. With
the lighting change, each scan has seven conditions with the
known pose. M3VSNet is implemented by Pytorch [20]. The
resolution of the input image is 640 × 512. Due to the pyra-
mid feature aggregation, the resolution of the final depth is
160 × 128. Additionally, the hypothetical range of depth is
sampled from 425mm to 935mm and the depth sample num-
berD is set to 192. The model is trained with the batchsize as
4 in four NVIDIA RTX 2080Ti. By using adam optimizer for
10 epochs, the learning rates are set to 1e-3 for the first epoch
and decrease by 0.5 for every two epochs. For the balance of
different weights in loss, we set γ1 = 1, γ2 = 1, α1 = 0.1,
α2 = 0.5, α3 = 0.5, λ1 = 0.8, λ2 = 0.2, λ3 = 0.067.
Beyond that, β1 = 0.2, β2 = 0.8, β3 = 0.4. During each
iteration, one reference image and two source images are
used. During the testing phase, the resolution of input image
is 1600 × 1200.

The official metrics [19] are used to evaluate M3VSNet’
performance on the DTU dataset. There are three metrics
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GT MVSNet Unsup MVS M3VSNet

Fig. 4. Qualitative comparison on the DTU dataset. From left
to right: ground truth, MVSNet, M3VSNet without feature-
wise loss and M3VSNet.

Method Mean Distance (mm)
Acc. Comp. overall.

Furu [3] 0.612 0.939 0.775
Tola [21] 0.343 1.190 0.766

Colmap [22] 0.400 0.664 0.532

SurfaceNet [5] 0.450 1.043 0.746
MVSNet(D=192) 0.444 0.741 0.592

Unsup MVS [18] 0.881 1.073 0.977
MVS2 [6] 0.760 0.515 0.637

M3VSNet(D=192) 0.636 0.531 0.583

Table 1. Quantitative results on the DTU ’s evaluation set.
Three classical MVS methods, two supervised learning-based
MVS methods and three unsupervised methods using the dis-
tance metric (lower is better) are listed.

called accuracy, completeness and overall. As shown in the
table 1, M3VSNet outperforms the existed two unsupervised
learning-based methods, Unsup MVS and MVS2. Moreover,
M3VSNet surpasses the supervised learning-based MVS-
Net in terms of the overall performance. Compared with
traditional MVS methods, M3VSNet achieves significant im-
provement on the completeness and outperforms Furu and
Tola on the overall quality except Colmap but with high
efficiency. For more detailed information in point cloud
reconstruction, figure 4 illustrates the qualitative compari-
son. The reconstruction by M3VSNet has more complete
texture details than that without feature-wise loss. There-
fore, M3VSNet establishes the state-of-the-arts unsupervised
learning methods for multi-view stereo reconstruction.

4.2. Generalization Ability on Tanks & Temples

To evaluate the generalization ability of M3VSNet, we use
the intermediate Tanks and Temples benchmark that has high-
resolution images of outdoor large-scale scenes. The model
of M3VSNet trained on the DTU dataset is transferred to the
Tanks & Temples benchmark without any finetuning. The in-
termediate Tanks and Temples benchmark contains kinds of

Family Francis Horse Playground

Panther M60 Train Lighthouse

Fig. 5. The performance of M3VSNet on the Tanks and Tem-
ples benchmark [23] without any finetuning. The quality of
dense point cloud reconstruction in large-scale scene shows
the powerful generalization ability of M3VSNet.

images with the resolution of 1920× 1056 and with the depth
hypothesis D = 160. Another core hyperparameter is the
photometric threshold in the process of depth fusion. For the
same depth maps, the different photometric thresholds will
lead to different performances. Higher photometric threshold
will cause better accuracy but worse completeness. In turn,
lower photometric threshold will introduce better complete-
ness but worse accuracy. For our proposed M3VSNet, the
photometric threshold is set to 0.6 and we get the following
results.

The ranking in the Leaderboard of the intermediate Tanks
and Temples benchmark shows that M3VSNet is the best
unsupervised MVS network until August 30, 2020. What’s
more, the DTU dataset is divided into a train-validation-
test split. The train-validation-test split has totally different
scenes. We train our model in the train split and evaluate the
generalization ability by the score in the test split. In view
of the above, the performance in figure 5 demonstrates the
powerful generalization ability of our proposed M3VSNet.
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