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On long-baseline relative positioning with BDS-2/BDS-3/GPS data  

Xiaoting Lei1,Huizhong Zhu1*, Jingfa Zhang1 ,Jun Li1 , Yangyang Lu1  

1 School of Geomatics, Liaoning Technical University (LNTU), Fuxin 123000, China;  
* Correspondence: Huizhong Zhu, zhuhuizhong@lntu.edu.cn 
 
Abstract: BeiDou global navigation satellite system 
(BDS-3) reached the global coverage in June 2020. 
To study the performance of the precise relative 
positioning using the BDS-3 alone and the 
improvement due to adding BDS-3 satellites to 
BDS-2 and GPS, this paper analysed the data of 
033-039d provided by the MGEX in 2021. The 
fusion of BDS-2, BDS-3 and GPS data was 
conducted for static and dynamic high-precision 
long-baseline solution experiments. The influence of 
the individual BDS-2 / BDS-3 / GPS and by adding 
BDS-3 satellites to BDS-2 and GPS on precise 
relative positioning convergence speed and 
positioning accuracy were analyzed, respectively. 
The experimental results show that the current BDS-3 
positioning performance (convergence speed and 
positioning accuracy) is similar to GPS, and the 
BDS-3 satellites effectively improve the positioning 
convergence speed upon BDS-2 and GPS. In the 
static positioning processing mode, with the aid of 
the BDS-3 satellites, the RMS (Root-Mean-Square) 
of the positioning errors using GPS only and the 
combination of BDS-2 and GPS was increased only 
by 20 % in the up direction, and for the BDS-2 
system alone, the positioning accuracies in the E, N 
and U components were increased by 60%, 71% and 
65%, respectively. In the dynamic positioning 
processing mode, after the addition of BDS-3 
satellites, the positioning accuracies using GPS and 
GPS+BDS-2 in the E, N and U components were 
improved by about 15 %, 23 % and 23 %, 
respectively, and the BDS-2 positioning accuracies 

were improved by about 46 %, 38 % and 36 % in the 
E, N and U components, respectively. 

Keywords: BDS-3; baseline solution; Multi-system 
Fusion; convergence speed1 Introduction 

The Beidou Navigation Satellite System (BDS) 
is one of the Global Navigation Satellite Systems 
(GNSS), developed by China. By following the 
"three-step" strategic policy, China has steadily been 
promoting the development of the BDS. The BDS-1 
was officially launched in 1994, and the BDS-2 
system started in 2004 and was completed at the end 
of 2012 with the service for Asia-Pacific region [1]. 
BDS-3 has been developed since 2015 and put into a 
global service on July 31, 2020 [2]. The complete 
BDS-3 constellation consists of 24 Medium Earth 
Orbit (MEO) satellites, 3 Geostationary Earth Orbit 
(GEO) satellites and 3 Inclined Geo Synchronous 
Orbit (IGSO) satellites. In terms of its signals, BDS-3 
satellites broadcast the B1I and B3I frequencies to 
achieve the compatibility with BDS-2. At the same 
time, in order to strengthen the compatibility and 
interoperability with other GNSS systems, BDS-3 has 
also been equipped with three new signals B2a, B2b 
and B1C [3], which can provide better positioning, 
navigation and timing (PNT) services for users 
globally [4]. 

Since the BDS was put into use, many scholars 
in China and abroad have done plenty of researches 
on its performance of BDS alone, or GPS + BDS 
combined [5-8]. Zhang et al. [9] show that the 
accuracy of a static baseline (medium baseline, 

Editor in charge: Dr. Baocheng Zhang 
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<100km) using the four-hour long BDS measurement 
data based on the broadcast ephemeris reached ±4cm. 
Pu et al and Wu et al. [10, 11] analyzed the relative 
positioning performance using the combination of the 
GPS, BDS and Galileo systems with the short 
baseline hybrid double-difference and short baseline 
single epoch tight combination. Their results showed 
that the dual-system or triple-system hybrid 
double-differencing technique can effectively 
accelerate the convergence speed toward the 
positioning accuracy improvement, and the tight 
combination model significantly improved the 
success rate and reliability in ambiguity fixing 
process. Jin et al. [12] showed that, in the solution of 
5km short baseline, the accuracy through the 
combined BDS-2 and BDS-3 was improved in 
comparison with GPS or BDS-2 alone, at the 
positioning accuracy of within ±5mm. 

To date, most researches have got involved in all 
aspects of BDS-2 positioning functions based on 
BDS-2, and mostly on precise relative positioning 
using BDS-2 alone or GPS + BDS-2 combined for 
short baselines. Therefore, this paper focuses on 
analyzing how significant the addition of BDS-3 
satellites to each single GNSS, GPS and BDS-2 and 

the combined GPS+BDS-2 contributes to the 
performance of long-baseline solutions. Section 1 
presents the mathematical model employed in this 
research, while Section 2 details the experiments of 
the chosen baselines of different lengths using the 
BDS-3 observation data and discusses the stability, 
convergence speed and positioning accuracy of the 
different GNSS constellations and their combinations 
in static and dynamic relative positioning from the 
results. Section 3 ends the manuscript with the 
conclusions and remarks. The outcomes from this 
research provide a valuable reference for the use of 
BDS-3 and its combined positioning with GPS. 

2  Mathematical model and data processing 
strategy 

2.1 Mathematical model 

In this paper, the common frequencies of B1I, 
B3I from BDS-2 and BDS-3, and GPS L1 and L2 are 
used to form the double-differenced ionosphere-free 
combination to eliminate the influence of first-order 
error of the ionospheric delay. The equations of the 
original observables are: 

( )
,

Φ,Φ

j j j
k k k trop P

j

j
r k k

j
j r

j j j
k k k k tropk k

P H X c dt c dt I d

H X c dt c dt

b b

I N dB Bλ

r ε

r λ ε

= + + ⋅ − ⋅ + + + +


= + + ⋅ −

−

+ −⋅ − + + + 

              (1) 

where: P and Φ are the pseudo-range and 
carrier-phase measurements, respectively; r 
represents the geometric distance from a receiver 
station to a satellite; H  is the linearized coefficient 
vector of the receiver’s position, X is the 3D position 
correction vector of the receiver with respect to their 
approximations, k represents the receiver station; j 
represents the satellite (j = 1, 2, …); c is the speed of 

light in vacuum; kdt  is the receiver’s clock error; 

jdt  is the satellite’s clock error; krb ,  and j
kb  

represent the code hardware delays of the receiver 

and satellite, respectively; 
,r kB  and j

kB  represent 

the phase hardware delays of the receiver and 

satellite, respectively; I is the ionosphere delay error; 
N is the carrier phase ambiguity with respect to the 

satellite; tropd is the troposphere delay; Pε εΦ、  are 

other errors of pseudo-range and phase observations, 
including noise, multipath effect and so on. A pair of 
the observation equations as (1) could be made 
available for each of the visible satellites 
corresponding to each of a specific signal frequency, 
respectively. The equations of the double-differenced 
ionosphere-free combinations are: 

ΦΦ

j
IF k trop P

j
IF k IF IF trop

P H X d

H X N d

r ε

r λ ε

∆∇ = ∆ + ∆∇ + ∆∇ + ∆∇ 

∆∇ = ∆ + ∆∇ + ∆∇ + ∆∇ + ∆∇ 

(2) 

where ∆∇  represents the double-differencing 
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operator; the subscript IF represents the 
ionosphere-free combination, and the others are the 
same as in (1). 

As well known, the zenith troposphere delay is 
divided into the dry and wet components. The dry 
component accounts for 80% - 90% of the total delay 
[16] and is corrected by using the Saatamoinen 
formulae, Then, the remaining wet component of 
tropospheric delay is estimated as follows: 

=trop dry dry wet wetd M T + M T                               (3) 

The ambiguity associated with a double- 
differenced ionosphere-free combination is expressed 
as: 

2 2
1 2

1 1 2 22 2 2 2
1 2 1 2

IF IF

f f
N N N

f f f f
λ λ λ∆∇ ∆ −

−
∇ ∆∇=

−
(4) 

1 1 2
1 2 2

1 2 1 2
IF NW

f f f
N N N

f f f f
= −

−
∆ ∆∇ ∆∇

−
∇   (5) 

where 
1 2NWN N N∆∇ ∆∇ ∆∇= −  is the wide-lane 

ambiguity, which can obtained by 
Melbourne-Wübbena (M-W) combination for inter 

epoch smoothing. The ambiguity 1N∆∇ in (5) has 

the integer characteristic and can be fixed by 
applying the Least-square AMBiguity Decorrelation 
Adjustment (LAMBDA). 

1.2 Stochastic model 

In general, the quality of the GNSS observation 
data and the elevation angles of the visible satellites 
are apparently related to each other. A consensus on 
the elevation angle of a satellite tells that the lower it 
is, the negative impact on the GNSS observations, the 
troposphere delay and multipath effect etc. would 
have [17]. This research specifically adopted the 
elevation angle based weighting model to determine 
the weight of corresponding observations: 

2
0

2
2
0

σ , 30
²σ =
σ , 30

E
sin E

E
sin E


< °


 ≥ °

（ ）

（ ）

                   (6) 

Moreover, the variances for pseudoranges and carrier 

phases are specified as follows: 

2

2
Φ

0
Φ 0

=
P

IF

IFP
D

σ
σ

     
    
     


                    (7) 

wherein 2σ  means the variance of an observation; 
2
0σ  is the a priori variance factor; E  is the 

elevation angle of a satellite; { }D • represents the 
variance (matrix) operator; 2

ϕσ  and 2
Pσ  represent 

the variances of a pseudorange and a carrier phase 
observation, respectively.. 

2 Experiments and their analysis 

The stations, YAR2 and NNOR in Australia and 
TASH, KITG, KIT3, USUD and MIZU in Asia 
provided by the Multi-GNSS Experiment (MGEX) 
observation network were chosen for our experiments 
in this research (Figure 1). By using the seven-day 
observation data from 033d to 039d in 2021, four 
baselines, KITG-KIT3 (190 m), YAR2-NNOR (236 
km), TASH-KITG (318 km) and USUD-MIZU 
(413km) were formed. An overview of the formed 
baselines is given in Table 1. The station coordinates 
in the Solution INdependent EXchange Format 
(SINEX) weekly solution file released by the 
international GNSS service (IGS) were taken as their 
true coordinates, whilst the phase center offsets (PCO) 
and phase center variation (PCV) corrections of GPS 
satellites and receiver antennas were taken from the 
ANTEX file issued by IGS. However, the current 
international service center only provides the BDS 
satellite PCO correction [18]. The positioning 
performance of the different GNSS systems was 
analyzed in terms of the convergence speed and 
positioning accuracy with the BDS-2, BDS-3 and 
GPS individually and their varied combinations, 
which are specified in the context of the individual 
tests. 

In data processing, the cut off elevation angle 
was set to 7° and the used sample interval of the 
observation data was 30s. The precise orbital 
products provided by the German Research Center 
for Geosciences (GFZ) were used. The troposphere 
delays were corrected by the Saatamoinen model and 
their residual errors were modeled, whilst the 
first-order ionosphere delay was eliminated by 
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applying the ionosphere-free combination. The 
least-square method was implemented for baseline 
estimation. The LAMBDA algorithm was used to fix 
the ambiguity parameters. The systematic errors such 
as the phase winding up, Earth’s rotation, relativistic 
effect and solid tide were corrected by the commonly 
available models accordingly. A summary of data 
processing strategy is given in Table 2. 

 
Figure 1: Distribution of stations 

2.1 Data quality analysis 

To ensure the data availability in the 
experiments before the data processing, the data 
quality is analyzed in three aspects: the satellite 
visibility, signal-to-noise ratio and multipath error 
effect. By taking the data on the DOY of 033 in 2021 
as an example, it can be seen from Figure 2 that the 
number of the common visible BDS-3 satellites was 
more than that of the BDS-2 satellites, and the 
number of the common visible BDS-3 satellites was 
between 6 and 11. Specifically, the number of the 
common visible BDS-3 satellites for the baseline of 
USUD-MIZU (413km) in Asia was 9, and the 
number of the common visible BDS-2 satellites was 
about 8. With GPS, the number of the common 
visible satellites between stations maintained between 
6 and 12. The number of the common visible GPS 
satellites for the baselines of KITG-KIT3 (190 m) 
and DASH-KITG (318 km) was significantly more 
than the one of the common visible BDS satellites, 
which was about 9 to 10 satellites. In general, The 
numbers of the common visible satellites from 

BDS-2, BDS-3 and GPS were sufficient for 
conducting our experiments. 

Table 1: Baseline information 

 length 
 

station longitude latitude Antenna 
type 

 

 190 
m 

YAR2 115°E 29°S AOAD/M_T NONE 

NNOR 116°E 31°S SEPCHOKE 
_B3E6 

NONE 

 236 
km 

TASH 69°E 41°N SEPCHOKE 
_B3E6 

NONE 

KITG 66°E 39°N TRM59800.00 SCIS 

 318 
km 

USUD 138°E 36°N AOAD/M_T JPLA 

MIZU 141°E 39°N SEPCHOKE 
_B3E6 

NONE 

 413 
km 

KITG 66°E 39°N TRM59800.00 SCIS 

KIT3 66°E 39°N SEPCHOKE 
_B3E6 

NONE 

Table 2: Data processing strategy 

DOY (observation data) 033d - 039d, 2021 
Positioning mode  Precise relative positioning 
Satellite systems BDS-2、BDS-3、GPS 
Satellite orbital 
products  

Precise products provided 
by GFZ 

Cut off elevation angle  7° 
Sample interval 30 seconds 
Troposphere dry delay Saastamoinen 
Troposphere wet delay Estimated as parameters  
Ionosphere Ionosphere-free combination 
Estimation method  Least-square  
Ambiguity fixing 
method  

LAMBDA 

The average values of Signal-to-Noise Ratio (SNR) 
and multipath error in the data at each station during 
7 days from 033d to 039d were analysed and 
presented in Figure 3 and Figure 4, respectively. The 
SNR, the ratio of signal strength of carrier 
observation to noise strength [19], can be used to 
measure the quality of the acquired satellite signals 
and the unit in dB-Hz. The higher the SNR, the 
higher data quality the carrier phases would have. As 
can be seen from Figure 3, the SNR of B3I was the 
highest. L1 and B1I were similar which maintained 
above 40 dB−Hz. The SNR of the L2 signal was low, 
but still higher than the minimum threshold of 30 
dB−Hz required by a standard data processing. 
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Figure 2: Total Number of common visible 

Satellites among Stations 

 
Figure 3: Signal-Noise Ratio of Each Station 

 

Figure 4: Multipath Error on Signals at Each Station 

In the process of signal propagation, the acquired 
satellite signal could be affected by the observation 
environment. For example, a receiver may receive the 
excess reflected signal from a certain type of the 
signal reflections, which is called multipath error. In 
comparison with the phase observations, the 
multipath error on pseudo-ranges could be large, even 
reach 0.5 code element width [20]. Figure 4 presents 
the multipath errors from four signals, of which the 
GPS L2 signal suffered from the largest multipath 
error, the multipath errors on BDS B1I were larger 
than that on B2I, whilst the GPS L1 signal had the 
best suppression of the multipath errors and 
possessed the best observation quality. In general, the 
multipath error in pseudo-ranges at each station 
signal was within 0.3 m. 

2.2 Convergence speed 

(a) KITG-KIT3(190m) 

(b)  YAR2-NNOR 

(c)  TASH-KITG 

(d)  USUD-MIZU  
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The commonly used evaluation measure is the 
convergence speed, which statistically analyses the 
convergence time, i.e., the Time To First Fix (TTFF). 
In order to introduce the TTFF analysis, with the 
7-day data from 033d to 039d in 2021, the 24-hour 
daily data were divided into the 6-hour long 
sub-periods. The starting hour of each sub-period is 
one hour shifted from its previous one, which are 
00:00:00, 01:00:00,..., Respectively (e.g., 
00:00:00-06:00:00, 01:00:00-07:00:00…). In the 
static and dynamic positioning processing mode, 
seven different combinations of GPS, BDS-2 and 
BDS-3 are solved, and the baseline vector (i.e., the 
ECEF incremental coordinates) between two stations 
need to be converted into their E, N, and U 
components relative to the base station. To ensure a 
reliable statistics, the differences in E, N, U 
directions of 20 consecutive epochs after the 
convergence time needs to reach and maintain their 
magnitudes relative to their references at the 
centimeter level. Hereupon, the statistics of the 
convergence time with the different combinations 
within each sub-period of the four groups of 
baselines was carried out respectively, and then the 
dynamic and static convergence rates associated with 
the seven combinations were analyzed. The statistical 
results are shown in Table 3 and Table 4, respectively 
while the convergence time statistics of static and 
dynamic solutions are shown in Figure 5 and Figure 6, 
respectively. 

In the static positioning processing mode, as 
shown in Table 3, the convergence process of 
resolving the short baseline is faster than the one of 
resolving the long baseline. The average convergence 
time with GPS alone remained within 20 min. Due to 
the sufficient number of common visible GPS 
satellites observed over the baseline of TASH-KITG 
(318 km) in Asia, the convergence speed was the 
fastest, reaching the centimeter accuracy in about 6 
minutes. The number of the observed BDS-3 
satellites in Asia was large, and its convergence speed 
was equivalent to or even better than with GPS. The 
average convergence time of GPS+BDS-3 
dual-system was within 10 min, 63% higher than that 
of GPS alone. The convergence speed of BDS-2 

alone was the slowest with the average convergence 
time of nearly 50 min. The average convergence time 
of BDS-2+ BDS-3 dual-system remained about 15 
min, about 70% higher than that of BDS -2 only. As 
can be seen from Figure 5, the worst convergence 
process happened to BDS-2 only on the DOY of 
034d in 2021 for 58 min. With the aid of BDS-3 
satellites, the convergence time was decreased down 
to 9 min, and the convergence speed was increased 
by 84%. The improvement of the convergence 
process of GPS+BDS-2 dual-system was good, which 
reached the centimeter accuracy in about 10 minutes. 
Furthermore, the overall convergence speed was 
increased by about 40% after having integrated the 
BDS-3 satellites.  

In the dynamic positioning processing mode, the 
baseline results are summarized in Table 4. The 
convergence time of GPS only was about 50 min. By 
adding BDS-3 satellites, the convergence time was 
decreased down to about 20 min, an incensement of 
the convergence speed by about 60%. The 
convergence speed of BDS-3 only was the same as 
that of GPS, which maintained to be about 50 min, as 
the convergence speed of BDS-2 only was the 
slowest in dynamic mode. As can be seen from 
Figure 6, the convergence speed of BDS-2 only was 
consistent in various regions and the average 
convergence time was about 140 min. With the aid of 
the BDS-3 satellites, it took about 30 min to achieve 
cm level convergence accuracy, and the overall 
convergence speed was increased by 80%. From the 
combined GPS+BDS-2, the convergence time was 
stably about 30 minutes. The addition of the BDS-3 
satellites decreased the convergence time down to 15 
minutes, i.e., a 50% improvement. 

In general, the BDS-2 positioning process in 
static and dynamic modes went convergent 
significantly slower than GPS. Although the number 
of the BDS-2 satellites at most of epochs was not less 
than the number of the GPS satellites, the number of 
the BDS-2 MEO satellites was low, and the orbit 
accuracy of the BDS-2 satellites was lower than that 
of the GPS satellites. So, the BDS-2 convergence 
time was much longer than GPS. Many more MEO 



 
141 

 

satellites have been launched with the BDS-3 system, 
and their orbit accuracy has been better than that of  

  

 

 
Figure 5: Static Mode Convergence Time Statistics 

Table 3: Statistics of Mean Convergence Time of 
Static Mode (min) 

TYPE 190 m 236 KM 318 KM  413 KM 
BDS-3 
GPS 

GPS+BDS-3 
BDS-2 

BDS-2+BDS-3 
GPS+BDS-2 

GPS+BDS-2+BDS-3 

3.12 
3.49 
2.39 
9.95 
2.29 
2.9 

1.97 

17.78 
18.89 
9.28 
48.84 
15.46 
13.01 
7.04 

11 
6.32 
4.21 
45.65 
9.99 
5.46 
3.2 

13.9 
16.68 
6.16 

45.33 
13.37 
9.21 
6.31 

Table 4: Statistics of mean convergence time for 
dynamic models (min) 

TYPE 190 m  236 km 318 km  413 km 

BDS-3 18.82 51.89 51.24 51.41 

GPS 20.76 47.93 48.79 55.29 

GPS+BDS-3 12.07 23.42 20.16 17.23 

BDS-2 53.74 141.64 136.36 138.9 

BDS-2+BDS-3 16.18 33.86 32.22 25.58 

GPS+BDS-2 17.74 33.66 26.54 27.19 

GPS+BDS-2+BDS-3 10.32 17.82 15.79 15.09 

BDS-2 satellites. The BDS-3 convergence speed 
has been better than BDS-2 and became equivalent to 
GPS. 

With the addition of BDS-3 satellites to the 
GPS+BDS-2 combined system, the convergence 
speed has been increased by about 30% in both static 
and dynamic modes. The convergence speed of the 
GPS positioning solution reached about 60% 
improvement with the aid of the BDS-3 satellites. 
The BDS-2 only solution convergence speed was 
slow. However the addition of the BDS-3 satellites to 
the BDS-2 improved the convergence speed by about 

(a)  KITG-KIT3(190m) 

(b) YAR2-NNOR(236 km) 

(c)  TASH-KITG(318 km) 

(d)  USUD-MIZU(413 km) 
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70-80%, which significantly reduced the BDS-2’s 
convergence time. The BDS system (BDS-2+BDS-3) 
functioned better than that of GPS only in terms of 
the positioning convergence speed. 

 

 

 

 

 
Figure 6: Dynamic Model Convergence Time Statistics 

2.3 Positioning accuracy 

This sub-section mainly analyzed how the 
addition of the BDS-3 satellites improves the 
positioning accuracy in different positioning modes 
by overviewing the solutions of each sub-period with 
the data from 33d-39d in 2021. In the static mode, the 
resulted differences of the E, N and U components at 
the last epoch of each sub-period were taken as the 
final positioning deviations. The average values of all 
the differences were considered as the static 
positioning errors. The results are given in Table 5 
whilst the detailed positioning deviations of each 
station from the DOY 033d to the DOY 039d is 
shown in Figure 7. In the dynamic mode, by taking 
the results from the remaining epochs after the 
convergence was reached during each sub-period, the 
RMS in E, N and U were calculated, and the average 
values of RMS of all data deviation sequences were 
considered as the dynamic positioning results (shown 
in Table 6). The detailed positioning deviations of 
each station on each day are shown in Figure 9. 

 

(a) KITG-KIT3(190m) 

(b)  YAR2-NNOR(236 km) 

(c) TASH-KITG(318 km) 

(d) USUD-MIZU(413 km) 
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(a) KITG-KIT3(190 m) 

 
(b) YAR2-NNOR(236 km) 

 

(c) TASH-KITG(318 km) 

 
(d) USUD-MIZU(413 km) 

Figure 7: Static Positioning Results RMS 
Comparison Histogram 

Table 5: Seven Day Average RMS Statistics of Static Positioning Results (cm)  

TYPE 190 m 236 km 318 km 413 km 
 E N U E N U E N U E N U 

BDS-3 
GPS 

GPS+BDS-3 
BDS-2 

BDS-2+BDS-3 
GPS+BDS-2 

GPS+BDS-2+BDS-3 

0.32 
0.28 
0.27 
1.2 
0.3 
0.29 
0.26 

0.23 
0.18 
0.18 
0.65 
0.16 
0.18 
0.17 

0.56 
0.56 
0.51 
1.8 
0.51 
0.6 
0.51 

0.72 
0.6 
0.58 
1.24 
0.7 
0.61 
0.57 

0.36 
0.35 
0.32 
0.82 
0.32 
0.37 
0.34 

1.73 
1.85 
1.68 
3.92 
1.71 
1.76 
1.38 

0.3 
0.28 
0.27 
1.54 
0.31 
0.28 
0.27 

0.26 
0.24 
0.22 
1.15 
0.25 
0.23 
0.2 

1.19 
0.77 
0.61 
3.98 
1.31 
0.66 
0.51 

0.46 
0.41 
0.4 
1.34 
0.45 
0.41 
0.39 

0.47 
0.32 
0.3 
1.12 
0.36 
0.32 
0.3 

0.88 
0.85 
0.79 
2.99 
0.83 
0.83 
0.69 

 
In the static positioning processing mode, as can 

be seen from Table 5, the long-baseline static relative 
positioning horizontal accuracy using GPS plus 
BDS-3 in each region was approximately the same as 
using GPS only., however, the vertical accuracy was 
improved to a certain extent. Specifically with the 
TASH-KITG (318) baseline in Asia , the GPS RMS 
of positioning differences in the E, N and U 
directions were 0.28 cm, 0.24 cm and 0.77 cm, 
respectively. With BDS-3 satellites together, the RMS 
in the E, N and U directions were about 0.27, 0.22 
and 0.61 cm. The horizontal accuracies in the E and 
N directions were similar to the ones from GPS only 
solution, but the accuracy in the vertical direction 

was increased by about 20%. It can be seen from 
Figure 7 that the positioning accuracy of the BDS-3 
only is slightly lower than that of the GPS only. The 
BDS-2 only performance was poor in comparison 
with the BDS-3 and GPS individually, but the 
combined BDS-2 and BDS-3 significantly improved 
the positioning accuracy. The most significant 
accuracy improvement was with the baseline of 
TASH-KITG (318) in Asia. Specifically, the 
positioning accuracy in E, N and U directions were 
increased to 0.31 cm, 0.25 cm and 1.31 cm from 1.54 
1.15 cm and 3.98 cm, respectively, , which presented 
the positioning accuracy improvement by 80% (East), 
78% (North) and 67% (Up), respectively. With GPS, 
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BDS-2, and BDS-3 together, although the positioning 
accuracy remained quite the same horizontally as 
without using the BDS-3 satellites and only 20% 
improvement vertically, the positioning reliability 
and measurement availability have been clearly 
improved. 

In order to more specifically compare the 
influential effect of the addition of the BDS-3 
satellites to BDS-2, BDS-2 and BDS-2+BDS-3 are 
analyzed in detail, taking DOY 34d in 2021 as an 
example(The data segmentation method is the same 
as that in Section 2.2). As can be seen from figure 8, 
adding the BDS-3 satellites has significantly 
improved the positioning performance upon of the 
BDS-2, which reached a horizontal accuracy at the 
millimeter level, specifically by about 60%, 71% and  

 
  （a）KITG-KIT3(190 m)                           
（b）YAR2-NNOR(236 km) 

 
 （c）TASH-KITG(318 km)                           
（d）USUD-MIZU(413 km) 

Figure 8: Static Positioning Results of BDS-2 and 
BDS-2+BDS-3 

65% (the RMS from 1.49, 1.0 and 3.27 cm to 0.59, 
0.29 and 1.14 cm) in three directions (E, N, Up). This 
is similar to GPS.  

In the dynamic positioning processing mode, it 
can be seen from Figure 9 that in the four sets of 
baselines, GPS and BDS-2 single system and 
GPS+BDS-2 dual-system have different degrees of 
improvement in E, N and U directions after adding 
BDS-3 satellites. The average RMS of positioning 
differences in the E, N and U directions of single 
GPS is 1.84 cm, 1.4 cm and 3.15 cm respectively. 
After adding BDS-3 satellites to form GPS+BDS-3 
dual-system, the average RMS in three directions is 
1.59 cm, 1.1 cm and 2.5 cm respectively, which 
increased by about 14%, 21% and 21%. The BDS-2 
and BDS-3 single system compared to GPS single 
system, The following conclusions can be obtained 
that the GPS positioning accuracy is optimal and 
BDS-3 positioning accuracies is slightly lower than 
GPS but better than BDS-2. The BDS-2 maximum 
differences are close to 4 cm in the E direction and 6 
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cm in the U direction, respectively. With the aid of 
BDS-3 satellites, BDS-2 RMS values are decreased 
from 3.26 cm, 2.53 cm and 5.13 cm to 1.75 cm, 1.56 
cm and 3.29 cm in E, N and U, respectively, i.e., their 
accuracies are increased by 46%, 38% and 36%, 
correspondingly. Compared with GPS, the dynamic 
relative positioning performance with the 
BDS-2+BDS-3 dual-system is better. After having 
added the BDS-3 satellites to the GPS+BDS-2 
dual-system, the dynamic and the static positioning 
mode are improved in the E, N and U directions. The 
average RMS increases from 1.74 cm, 1.28 cm and 
2.94 cm to 1.47 cm, 0.96 cm and 2.24 cm, which 
promoted about 16%, 25% and 24%, respectively. 

To more intuitively study the impact of adding 
BDS-3 on positioning, in the dynamic positioning 
processing mode, using the data of DOY 34d in 2021 
and the dynamic positioning performance is analyzed 
by seven different combinations(BDS-2, BDS-3, GPS, 
GPS + BDS-3, BDS-2 + BDS-3, GPS + BDS-2, GPS 
+ BDS-2 + BDS-3). 

 

 
（a）KITG-KIT3(190 m)                             

 
(b) YAR2-NNOR(236 km) 

  
(c) TASH-KITG(318 km)                              

 
(d) USUD-MIZU(413 km) 

Figure 9: Dynamic Positioning Results RMS 
Comparison Histogram  

 
Table 6: Seven Day Average RMS Statistics Result of Dynamic Positioning Mode (cm) 

TYPE 190 m 236 km 318 km 413 km 
E N U E N U E N U E N U 

BDS-3 
GPS 

GPS+BDS-3 
BDS-2 

BDS-2+BDS-3 
GPS+BDS-2 

GPS+BDS-2+BDS-3 

2.29 
2.12 
1.57 
3.16 
1.82 
1.69 
1.38 

1.04 
1.02 
0.87 
2.05 
1.01 
0.95 
0.75 

3.03 
2.89 
2.39 
4.43 
2.56 
2.69 
2.22 

2.55 
2.23 
1.88 
3.8 

2.15 
2.09 
1.73 

1.9 
1.54 
1.19 
2.71 
1.74 
1.36 
1.09 

3.94 
3.51 
3.02 
5.45 
3.8 

3.29 
2.98 

1.57 
1.21 
1.09 
2.68 
1.19 
1.18 
1.01 

1.24 
0.93 
0.71 
1.93 
1.07 
0.84 
0.7 

3.33 
2.88 
2.05 
5.15 
2.9 

2.62 
1.86 

2.24 
2.09 
1.8 
3.3 
1.9 

1.96 
1.68 

2.07 
1.73 
1.39 
2.95 
1.88 
1.65 
1.09 

3.54 
3.06 
2.44 
4.78 
3.18 
2.9 

1.89 
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The GPS+BDS-3 combination possessed the 
best and most stable solution, as the BDS-2 only 
solution was the worst, partially with the large 
fluctuation. The combination of the BDS-3 and 
BDS-2 speeded up the solution convergence. Besides, 
the positioning accuracy also received a better lifting 
effect. By taking the baseline of USUD-MIZU (413 
km) in Asia as an example, the number of the 
observed BDS-2 satellites was relatively low during 
the 12-16 h on that day so that the result can’t go 
convergent during dynamic data processing. However, 
after having included the BDS-3 satellites, the 
solution accuracy was effectively improved down to 
centimeter-level. The combined BDS-3+GPS and 
BDS-3+GPS+BDS-2 have also improved the solution 
accuracy in all of the three directions. It can be seen 
from Figure 10 that the data will jump in the last 15 
minutes of each day, which is due to the influence of 
the daily boundary discontinuities (DBD) [21,22]. 

3 Conclusion 

Based on the observation data provided by 
MGEX and the precise products released by GFZ, 
this research conducted specific experiments on the 
long baseline relative positioning in static and 
dynamic modes using BDS-2, BDS-3 and GPS 
individually and different combinations of them and 
obtained the following conclusions through the 
comparative analysis in terms of data quality, 
convergence speed and positioning accuracy: 

(1) In the static and dynamic data processing 
modes, the convergence speed and positioning 
accuracy using BDS-3 are similar to GPS, and the 
positioning accuracy meets the requirements of 
current high-precision positioning; 

(2) The inclusion of the BDS-3 satellites in 
addition to GPS, BDS-2 and GPS+BDS-2 in precise 
relative positioning can effectively improve the 
solution convergence speed, especially for BDS-2; 

(3) In the static precise relative positioning 
mode, the addition of the BDS-3 satellites to GPS, 
and GPS+BDS-2does not significantly improve the 
horizontal positioning accuracy, but the vertical 
accuracy by about 20%. The formation of 
BDS-2+BDS-3 has increased the accuracy in the E, N 
and U directions by about 60%, 71% and 65% 
respectively. The accuracy in E and N directions 
maintained within 1 cm while the accuracy in the U 
direction was kept within 2 cm; 

(4) In the dynamic precise relative positioning 
mode, The inclusion of the BDS-3 satellites in GPS  
and in GPS+BDS-2 has made a consistent 
improvement. The positioning accuracy in the E, N 
and U directions has been improved by about 15%, 
23% and 23%, respectively. The positioning accuracy 
with using BDS-2+BDS-3 has been improved by 
about 46%, 38% and 36% in E, N and U directions, 
respectively. 
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   （a）TASH-KITG(318 km)                          （b）USUD-MIZU(413 km) 
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（c）TASH-KITG(318 km)                          （d）USUD-MIZU(413 km) 

 

（e）TASH-KITG(318 km)                          （f）USUD-MIZU(413 km) 

Figure 10: All-day Dynamic Mode Positioning Deviation Statistics with 24 h 
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Abstract 

The development of global navigation satellite 
systems (GNSS), especially BeiDou navigation 
satellite system with global coverage (BDS-3), has 
brought benefits for high-precision positioning. 
Real-time kinematic (RTK) positioning based on 
double-differenced (DD) observations has been 
widely used in high-precision positioning as common 
errors are eliminated. However, the biases at the 
receiver-end, which can be dynamically constrained, 
are also eliminated during the DD process. Therefore, 
it makes sense to turn RTK from DD to 
single-differenced (SD) as the advantages of dynamic 
constraints of the receiver biases can be exploited. In 
this contribution, we first present RTK models based 
on DD observations suitable for short, medium and 
long baselines. Then, based on SD observations, the 
full-rank RTK models are constructed with the 
S-system theory. Using observations from GPS, 
BDS-3 and Galileo, we first demonstrate the 
short-term stability of receiver-related biases. The SD 
RTK positioning performance with the stability of 
those receiver-related biases regarding integer 
ambiguity resolution success rate and positioning 
accuracy are analyzed. With those biases, RTK can 

achieve high performance, and this is more 
advantageous in multi-GNSS scenarios. 

Keywords: Real-time kinematic (RTK), 
double-differenced (DD), single-differenced (SD), 
integer ambiguity resolution (IAR), BeiDou-3, global 
coverage, receiver biases 

Introduction 

Global and regional satellite navigation systems 
are developing rapidly, offering excellent 
opportunities for scientific and engineering 
applications [Li et al. 2019; Pignalberi et al. 2019; 
Ruhl et al. 2017]. Currently, GPS, GLONASS and 
Galileo are undergoing modernization while BeiDou 
navigation satellite system (BDS-3) completed its 
global deployment in July 2020 [Karutin 2020; Liu et 
al. 2021; Yalvac and Berber 2018; Yang et al. 2021; 
Yuan et al. 2020]. The advent of regional navigation 
satellite systems (RNSS) such as quasi-zenith 
satellite system (QZSS) and Navigation Indian 
Constellation (NavIC) has also increased the number 
of satellites in orbit [Santra et al. 2019; Zaminpardaz 
et al. 2018]. More satellites and frequencies are 
becoming available in this situation that benefits 
positioning, navigation, and timing (PNT) 
applications.  
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Precise point positioning (PPP) and real-time 
kinematic (RTK) positioning are two representative 
techniques [Paziewski et al. 2018; Shi et al. 2020]. 
Based on precise orbit and clock products, PPP can 
provide centimeter-level positioning services 
[Bahadur and Nohutcu 2019]. However, traditional 
PPP solutions typically require a 5-30 min 
convergence period and do not consider integer 
ambiguity resolution, which is defective in real-time 
and high-precision applications [Xiao et al. 2019]. 
Some commercial high-precision services have 
reduced PPP convergence time to a few minutes, but 
this requires additional precise corrections [Atiz et al. 
2021]. With the help of a reference network, RTK can 
achieve fast integer ambiguity resolution and thus 
provide millimeter-level positioning services. 
Although integer ambiguity resolution enabled PPP 
(PPP-RTK) as a new representative technology is 
attracting widespread attention [Khodabandeh and 
Teunissen 2016], RTK is still the technology which 
real-time high-precision GNSS services depend on.  

The classical RTK is usually based on 
double-differenced (DD) observations, which can 
benefit from serval advantages. First, DD RTK 
eliminates common errors from both the receiver-end 
and satellite-end; thus, the full-rank model can be 
obtained directly. Second, errors in propagation such 
as ionospheric and tropospheric delays are greatly 
reduced during the DD process. However, the DD 
observations amplify the effect of observation noise 
and multipath effect. In addition, the DD model 
eliminates the biases at the receiver-end, thus losing 
the opportunity to impose dynamic constraints to 
enhance the model strength [Odolinski et al. 2015b]. 
There is a mathematical correlation between the DD 
observations, which is not conducive to quality 
control and judging the source of gross error [Zhang 
et al. 2019]. 

The advantages of a SD model compared with a 
DD one have already been recognized for a long time 
in the case of RTK positioning [Liu et al. 2003; Mi et 
al. 2019a; Odijk and Teunissen 2008; Odolinski et al. 
2015a]. With an SD formulation, one has the 
advantage of using a more straightforward 
observational variance matrix than the one used in a 

DD formulation. Receiver-end biases that are not 
considered of interest in positioning are eliminated in 
a DD model while retained in an SD one, which a 
dynamic model can constrain to improve model 
strength [Mi et al. 2020]. Those receiver-related 
biases include differential code bias (DCB), 
differential phase bias (DPB) and inter-system bias 
(ISB). DCBs and DPBs are stable that can be 
pre-corrected or estimated as time-invariants, both of 
which can enhance the model strength. ISBs can 
promote the signal integration of multi-frequency and 
multi-constellation, which is beneficial to PNT in 
terms of accuracy, integrity, and availability [Odijk et 
al. 2017; Tian et al. 2019].  

With the SD observations, rank deficiencies 
have to be solved as not all unknowns can be 
estimated without biases [Odolinski et al. 2020]. 
Fortunately, the S-system theory can be used to 
identify the source of rank defects, select appropriate 
S-basis and construct a full-rank model, which was 
developed for terrestrial geodetic networks at first 
[Odolinski and Teunissen 2017a]. It should be noted 
that the choice of S-basis is not unique, which 
dictates the estimability and the interpretation of 
parameters. 

In this contribution, we first review the 
ionosphere-float, -weighted and -fixed DD RTK 
models considering different ionospheric constraints, 
suitable for long, medium and short baselines. Then, 
based on the SD observations, we propose the 
ionosphere-float, -weighted and -fixed SD RTK 
models. As for the rank deficiencies in the SD models, 
the S-system theory is used to construct the full-rank 
model. 

The remainder of this paper proceeds as follows. 
Section 2 first reviews the DD RTK model and then 
develops the RTK model based on SD observations. 
Section 3 presents the experimental setup and RTK 
positioning results for GPS, BDS-3 and Galileo. 
Finally, we summarize our findings and conclusions 
in Section 4. 

 

Methodology 
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This section first gives the DD RTK models suitable 
for short to long baselines, namely ionosphere-float, 
-weighted and -fixed model. Then, the SD RTK 
models of ionosphere-float, -weighted and -fixed are 
constructed. 

GNSS observation equations 

The starting point of developing RTK models is the 
equations for GNSS code and phase 
observables [Leick et al. 2015], which read, 
respectively 

, , , , ,

, , , , , ,

s s s s s s s
r j r r r j r r j j p r j

s s s s s s s s
r j r r r j r j r j r j j r j

p dt dt I d d

dt dt I N φ

r t µ ε

φ r t µ λ d d ε

= + + − + + − +

= + + − − + + − +
            (1) 

with r , s and j the receiver, satellite and frequency. 

,
s
r jp and ,

s
r jφ are the code and phase observations 

measured by receiver r from satellite s on frequency j .
s
rr is the satellite-receiver range, s

rt is the 

tropospheric delay, rdt is the receiver clock and .r jd ( .r jd ) 

is the receiver code (phase) bias. s
rI is the 

ionospheric delay and
1

2 2
jjµ λ λ= is its coefficient with

jλ the wavelength, ,
s
r jN is the integer phase ambiguity.

sdt is the satellite clock and ,
s
jd ( ,

s
jd ) is the satellite 

code (phase) bias. , ,
s
p r jε and , ,

s
r jφε are the code and 

phase observation noise and miss-modeled random 
effects. 

DD RTK model 

The common errors at the satellite-end and the 
receiver-end are eliminated in DD RTK without rank 
deficiency. Therefore, DD RTK can be directed used 
for precise positioning. Considering that different 
ionospheric delay processing strategies, three variants 
are given. 

DD ionosphere-float variant 

During the DD process, one receiver and one 
satellite have to be selected as pivot receiver and 
satellite (represented by 1). Then, the DD code and 
phase observations can be given as follows, 

1 1 1 1 1
1 , 1 1 1 ,1 ,

1 1 1 1 1 1
1 , 1 1 1 1 , ,1 ,

s s s s s
r j r r j r p r j

s s s s s s
r j r r j r j r j r j

p I

I N φ

r t µ ε

φ r t µ λ ε

= + + +

= + − + +
      (2) 

where 1
1 ,

s
r jp and 1

1 ,
s
r jφ are the DD code and phase 

observations, respectively. 1
1

s
rt and 1

1
s
rI are the DD 

tropospheric and ionospheric delays. 1
1 ,

s
r jN is the DD 

phase ambiguity. For long baselines, the DD 
tropospheric and ionospheric delays cannot be 
neglected. For tropospheric delay, it is common 
practice to divide it into two parts, dry and wet delays 

where ( )s s s
r d r r rmt t t= + . The dry part ( )s

d rt is directly 

corrected in the code and phase observations using an 
a-priori troposphere model [Leandro et al. 2008]. The 

wet part rt zenith troposphere delay (ZTD) is 

estimated as unknown with s
rm  an 

elevation-dependent mapping function [Hadas et al. 
2020; Tuka and El-Mowafy 2013]. For the DD 
ionospheric delays, they are estimated as unknown 
parameters together with the other parameters in long 
baselines. Therefore, the DD ionosphere-float model 
can be given as 

 

1 1 1 1 1
1 , 1 1 1 ,1 ,

1 1 1 1 1 1
1 , 1 1 1 1 , ,1 ,

s s s s s
r j r r r j r p r j

s s s s s s
r j r r r j r j r j r j

p m I

m I N φ

r t µ ε

φ r t µ λ ε
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 (3) 

with 1 1 1
1 , 1 , 1( )s s s
r j r j d rp p t= −  and 1 1 1

1 , 1 , 1( )s s s
r j r j d rφ φ t= − .  

DD ionosphere-weighted variant 

It is acceptable to use Eq. (3) for RTK positioning of 
medium baselines with no more than 100 kilometers. 
However, the ionospheric delays from the same 
satellite are approximately equal for the different 
receivers at this distance [Teunissen 1998]. Therefore, 
it is wise to include the ionospheric delay in the 
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model of Eq. (3) as an additional observable [Zha et 
al. 2021]. The DD ionosphere-weighted model can be 
given as follows, 

1 1 1 1 1
1 , 1 1 1 ,1 ,

1 1 1 1 1 1
1 , 1 1 1 1 , ,1 ,

1 1 1
1 1 ,1 ,

s s s s s
r j r r r j r p r j

s s s s s s
r j r r r j r j r j r j

s s s
r r I r j

p m I

m I N

I I
φ

r t µ ε

φ r t µ λ ε

ε

= + + +

= + − + +

= +



   (4) 

where 1
1

s
rI  is the DD ionospheric pseudo- 

observables, and can be interpolated by reference 
network or assumed as zero for medium baselines. 
The reasonable stochastic model of those observables 
is necessary, which is usually determined by both 
baseline length and satellite elevation angle. It is 
worth noting that the stochastic model is limited by 
the region and time, so it is necessary to model the 
stochastic model for the operating area in advance 
[Mi et al. 2019b]. 

DD ionosphere-fixed variant 

For baselines within a few tens of kilometers, it is 
safe to assume the DD ionospheric and tropospheric 
delays are zero. Therefore, the DD ionosphere-fixed 
model can be written as, 

1 1 1
1 , 1 ,1 ,

1 1 1 1
1 , 1 1 , ,1 ,

s s s
r j r p r j

s s s s
r j r j r j r j

p

N φ

r ε

φ r λ ε

= +

= + +




               (5) 

The unknown parameters to be estimated are position 
and phase ambiguity, and the strength of the model is 
improved.  

SD RTK model 

Unlike the DD RTK model, the SD model needs to be 
solved uniquely, as it is a rank-deficient system. This 
means that not all the unknowns in the SD model can 
be estimated separately, but only their combinations. 
Therefore, to construct the full-rank SD model, the 
S-system theory is used. The details of S-system 
theory can be referred to Odijk et al. [2016], which 
will not be repeated here. Similar to the DD model, 
ionosphere-float, -weighted and -fixed variants are 
constructed, respectively. 

SD ionosphere-float variant 

As a starting point of developing the SD algorithm, 
we first give the SD code and phase observations 
which reads, 

1 , 1 1 1 1 1 , ,1 ,

1 , 1 1 1 1 1 , 1 , ,1 ,

s s s s s
r j r r r j r r j p r j

s s s s s s
r j r r r j r j r j r j r j

p dt I d

dt I N φ

r t µ ε

φ r t µ λ d ε

= + + + + +

= + + − + + +
                (6) 

where 1 ,
s
r jp and 1 ,

s
r jφ are the SD code and phase 

observations. 1
s
rr  is the SD satellite-receiver range,

1
s
rt  and 1

s
rI  are the SD tropospheric and ionospheric 

delays. 1rdt  is the SD receiver clock, 1 ,r jd  and 1 ,r jd

are the SD receiver code and phase biases. 1 ,
s
r jN  is 

the SD phase ambiguity.  
Although the satellite clock, code and phase 

biases are eliminated during this process, Eq. (5) can 
still not be used for RTK positioning, as it is 
rank-deficient. The rank-deficient occurs in three 
ways [Mi et al. 2021; Odolinski and Teunissen 2016; 
Odolinski and Teunissen 2017b]. First, the linear 

dependency between the columns of the receiver 
clock and the receiver code/phase biases. Second, the 
column dependency between the receiver clock, the 
code/phase biases and the ionosphere delay. Third, 
the columns of the design matrix between the 
receiver phase bias and phase ambiguity are linear 
dependent. As we mentioned earlier, those rank 
deficiencies can be eliminated by the S-system theory. 
The first two rank deficiencies can be eliminated by 

fixing the SD receiver code biases on 1j = (
1 ,1rd )and 

on 2j = (
1 ,2rd ), respectively. As for the third one, one 

satellite has to be selected as pivot satellite to 
overcome this rank deficiency. 

Once the rank deficiencies have been solved, the 
full-rank SD ionosphere-float RTK model can be 
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given as, 

1 , 1 1 1 1 1 , ,1 ,

1
1 , 1 1 1 1 1 , 1 ,1 1 , ,1 ,

s s s s s
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s s s s s s
r j r r r r j r j r j r r j r j

p m dt I d

m dt I N φ

r t µ ε

φ r t µ λ d d ε

= + + + + +

= + + − + + + +



  
        (7) 

where 1 , 1 , 1( )s s s
r j r j d rp p t= −  and 1

1 , 1 , 1( )s s s
r j r j d rφ φ t= − , 

the dry tropospheric delay is directly corrected in the 

observations. The reparametrized estimable 
unknowns in Eq. (7) are given in Table 1. 

 

Table 1 The reparametrized estimable unknowns and their interpretation for SD ionosphere-float 

model, where
2 1

1
1 , 1 ,2 1 ,1( )r GF r rd d dµ µ−= − and 2 1

2 1 2 11 , 1 ,1 1 ,2r IF r rd d dµ µ
µ µ µ µ− −= −  

Notation and interpretation Estimable parameter Conditions 

1 1 1 ,r r r IFdt dt d= +  Between-receiver clock  

1 , 1 , 1 , 1 ,r j r j r IF j r GFd d d dµ= − −  Between-receiver DCB 3j ≥  

1
1 ,1 1 ,1 1 , 1 , 1 ,1r r r IF j r GF j rd d Nd d µ λ= − + +  Between-receiver DPB of the first frequency  

1 1
1 , 1 , 1 ,1 1 , 1 ,1r j r j r j r j j rN Nd d d λ λ= − + −  Between-receiver DPB 2j ≥  

1 1 1 ,
s s
r r r GFI I d= +  Between-receiver iono delays biased by receiver code bias  

 

SD ionosphere-weighted variant 

With the ionosphere pseudo-observables available, 
the second rank deficiency gets eliminated, which 
increases the redundancy and thus strengthens the 

model. After the first and third rank deficiencies have 
been solved, the full-rank SD ionosphere-weighted 
RTK read, 

1 , 1 1 1 1 1 , ,1 ,

1
1 , 1 1 1 1 1 , 1 ,1 1 , ,1 ,

1 1 ,1 ,

s s s s s
r j r r r r j r r j p r j
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r r I r j
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m dt I N

I I
φ

r t µ ε

φ r t µ λ d d ε

ε

= + + + + +

= + + − + + + +

= +

 

            (8) 

where 1
s
rI  is the SD ionospheric pseudo-observables. 

The reparametrized estimable unknowns and their 

interpretation are different from the SD 
ionosphere-float model, which is presented in Table 2.

Table 2 Reparametrized estimable unknowns and their interpretation for the SD 
ionosphere-weighted and -fixed model 

Notation and interpretation  Estimable parameter Conditions 

1 1 1 ,1r r rdt dt d= +  Between-receiver clock  

1 , 1 , 1 ,1r j r j rd d d= −  Between-receiver DCB 2j ≥  

1
1 ,1 1 ,1 1 ,1 1 ,1r r r j rd Nd d λ= − +  Between-receiver DPB of the first frequency  

1 1
1 , 1 , 1 ,1 1 , 1 ,1r j r j r j r j j rN Nd d d λ λ= − + −  Between-receiver DPB 2j ≥  
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SD ionosphere-fixed variant 

For short baselines, the SD ionospheric and 
tropospheric delays can be assumed as zero to 
strengthen the model. Similar to the SD 
ionosphere-weighted model, the SD ionosphere-fixed 
also needs to solve the first and third rank 
deficiencies. Thus, the S-basis choices are also the 
same as in the ionosphere-weighted model. The 
full-rank SD ionosphere-fixed model follows as, 

1 , 1 1 1 , ,1 ,

1
1 , 1 1 1 , 1 ,1 1 , ,1 ,

s s s
r j r r r j p r j

s s s s
r j r r j r j r r j r j

p dt d

dt N φ

r ε

φ r λ d d ε

= + + +

= + + + + +

 

   
 (9) 

where the estimable unknowns and their 
interpretation are also the same as in the Eq. (8) in 
Table 2.  

Experimental Analysis 

This section starts with an outline of the experimental 
setup, including the relevant characteristics of the 
experimental datasets considered for this study and 
our data processing strategies. Then, the 

characterization of the receiver-end biases, including 
DCB and DPB. Following that is an evaluation of the 
SD RTK positioning performance in terms of integer 
ambiguity resolution success rate and positioning 
accuracy. 

Experimental setup 

We collected multi-GNSS data from three receivers 
in Wuhan, China, including one Septentrio 
POLARx5 (APM3), one Septentrio POLARx5TR 
(APM7) at the campus of the Innovation Academy of 
Precision Measurement Science and Technology, 
Chinese Academy of Sciences and one JAVAD 
TRE_3 (WHU2) at the campus of Wuhan University. 
We connected the receivers (APM3 and APM7) to a 
single antenna that is 1.7 km away from WHU2. 
Those data were collected for GPS, BDS-3 and 
Galileo on June 9-10, 2021, with a sampling interval 
of 30 s. The detailed characteristics of the 
experimental data used in our study are summarized 
in Table 3. 

Table 3 An overview of GNSS data considered in our study 

Station ID Receiver type Antenna type Constellation 

APM3 Septentrio POLARx5 
TRM159800.00 NONE 

GPS L1, L2 

BDS-3 BIC, B2a 

Galileo E1 E5a 

APM7 Septentrio POLARx5TR 

WUH2 JAVAD TRE_3 JAVRINGANT_G5T NONE 

 
The cut-off elevation was set to 15° to reduce 

the impact of the multipath effect, and the 
elevation-dependent weighting function was used 
[Shen et al. 2009]. GPS, Galileo, and BDS-3 are 
assumed to be equal-weighted, where the 
undifferenced zenith-referenced a priori code and 
phase standard deviations are 0.3 m and 0.003 m, 
respectively. The LAMBDA and the ratio test were 
used for integer ambiguity resolution and the 
validation of the correctness of the resolved 
ambiguities [Teunissen and Verhagen 2009; 
Teunissen et al. 1997]. In addition, the effect of the 
outliers was detected and eliminated through the 

Detection, Identification and Adaptation (DIA) 
procedure [Teunissen 2018].  

Characterization of receiver-related biases 

As we can see from those SD models, three 
receiver-related biases are included, including DCB, 
DPB of the first frequency and DPB. See the 
interpretation of the DPB of first frequency 

( 1
1 ,1 1 ,1 1 , 1 , 1 ,1r r r IF j r GF j rd d Nd d µ λ= + − + in 

ionosphere- float model and 

1
1 ,1 1 ,1 1 ,1 1 ,1r r r j rd Nd d λ= + +  in ionosphere-weighted 
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and fixed models), which contains a combination of 
code and phase biases. Thus, the DPB of the first 
frequency is influenced by code observations while 
the DPB, which is only related to phase observation, 
is not.  

As a typical example, we show in Figs. 1-3 
those three receiver-related biases for GPS, BDS-3 
and Galileo with the zero baseline APM3-APM7 on 
June 9, 2021. The purpose of this is to characterize 
these biases to determine whether they can be 
pre-corrected or estimated as time invariants in RTK 
positioning. See Fig. 1 first, showing the DCB for 
GPS, BDS-3 and Galileo. Focusing on each panel, we 
can see that the DCB of all three systems is 
significant, which can not be ignored in RTK 
positioning. These DCB estimates fluctuate randomly 
around their mean values with no apparent trend over 
time. The standard deviations of DCB estimates for 
GPS, BDS-3 and Galileo are 0.029 m, 0.014 m and 
0.019 m, exhibiting noise much smaller than the code 
observations with decimeter level. That is to say, 
DCB is stable enough over short-time, so it can be 
pre-corrected or used as time-invariant parameter 
estimation in RTK positioning.  

Then turn attention to Fig.2, depicting the DPB 
of the first frequency. As the DPB of the first 
frequency is the difference between code and phase 
biases, its estimate has a similar noise level to DCB 
as expected. The standard deviations of DPB of the 
first frequency estimates for GPS, BDS-3 and Galileo 
are 0.025 m, 0.012 m and 0.015 m, slightly smaller 
than that of DCB. This is because DCB is the 
difference of the code bias between the second 
frequency and the first frequency, while DPB is the 
difference between the code bias and the phase bias 
of the first frequency, and the noise of the phase bias 
is less than the code one.  

We confirm and extend our findings from Fig.3, 
showing the DPB estimates for GPS, BDS-3 and 
Galileo. First, those DPB estimates fluctuate 
randomly around their mean values, just like DCB 
and DPB of the first frequency, but with more 
negligible noise. The standard deviations of DPB of 
the first frequency estimates for GPS, BDS-3 and 
Galileo are below 1 mm, showing minimal noise. 

This is because that DPB is only related to phase 
observations with slight noise. However, DPB is 
more difficult to pre-correct due to the introduction of 
the ambiguity with two frequencies. Thus, the usual 
practice is to treat DPB as a time-invariant parameter 
in RTK positioning. 

 
Fig. 1 Time series of DCB for APM3-APM7 with 

GPS, BDS-3 and Galileo on DOY 159 of 
2021 

SD RTK positioning performance 

As we have shown above, receiver-related DCB, 
DPB of the first frequency and DPB have good 
short-term stability, thus can be estimated as 
time-invariants. Thus, for multi-frequency 
multi-GNSS RTK positioning, the SD method can 
achieve better performance than the DD method [Liu 
et al. 2004]. To test the performance of SD RTK, we 
select GNSS data from two baselines, a zero one 
(APM3-APM7) and a short one (APM7-WUH2) with 
1.7 km, on June 10, 2021. In our analysis, 
receiver-related biases are estimated as 
time-invariants for each constellation, and the integer 
ambiguity resolution success rate and positioning 
accuracy are assessed.  
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Fig. 2 Time series of DPB of the first frequency 

for APM3-APM7 with GPS, BDS-3 and 
Galileo on DOY 159 of 2021 

 
Fig. 3 Time series of DPB for APM3-APM7 with 

GPS, BDS-3 and Galileo on DOY 159 of 
2021 

Table 4 presents the integer ambiguity resolution 
success rate results with GPS, BDS-3, Galileo and 

their combination for APM3-APM7 and 
APM7-WUH2 on June10, 2021. Our analysis defines 
the success rate as the epochs with ambiguity 
corrected resolved divided by the total epochs. For 
zero baseline APM3-APM7, as the atmospheric 
delays are fully eliminated, the integer ambiguity 
resolution success rate for GPS-only, BDS-3-only, 
Galileo-only and their combination are all 100%. The 
short baseline APM7-WUH2, limited by atmospheric 
delays and multipath effect, does not achieve the 
same performance as the zero baseline APM3-APM7. 
The success rate for GPS-only, BDS-3-only, 
Galileo-only and GPS+BDS-3+Galileo is 96.7%, 
97.1%, 95.2% and 99.7%. For a single constellation, 
the success rate of BDS-3 is higher than that of GPS 
and Galileo, which is owing to the more visible 
satellites of BDS-3 in China. With the combination of 
those three constellations, the success rate reaches 
99.7%, demonstrating the advantages of multi-GNSS. 

Fig. 4 shows the positioning results of the zero 
baseline APM3-APM7 with GPS, BDS-3, Galileo 
and GPS+BDS-3+Galileo on June 10, 2021. As we 
can see that BDS-3 achieves the highest positioning 
accuracy (1.6 mm, 1.9 mm and 4.1 mm for E, N, U) 
among three single constellations. This may be due to 
BDS-3 has more satellites observable in China than 
GPS and Galileo. For GPS+BDS-3+Galileo, the 
root-mean-square (RMS) of the positioning errors in 
the North/East/Up is 1.3 mm, 1.2 mm and 3.5 mm, 
better than the other three single constellations.  

Fig. 5 depicts the positioning performance of the 
short baseline APM7-WUH2. The impact of residual 
atmospheric errors and multipath effects is shown in 
the positioning results, reflected in the RMS of 
positioning errors. For three single constellations, 
BDS-3 performs the best, followed by GPS and 
Galileo. The advantages of combining the three 
systems are also demonstrated, where the RMS of the 
positioning errors in the North/East/Up is 1.0.6 cm, 
0.6 cm and 1.3 cm, respectively. 

Conclusions 

Real-time kinematic (RTK) positioning based on 
double-differenced (DD) observations has been 
wildly used. Although the DD RTK eliminates the 
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common parameters, it loses the opportunity to 
constrain some parameters dynamically. In this 
contribution, we focused on single differenced (SD) 
observations with receiver-end parameters. However, 
the RTK model based on SD observations is 

rank-deficient, so the S-system theory was used to 
construct the full-rank model. Considering different 
ionospheric constraints, we derived three SD models: 
ionosphere-float, -weighted and -fixed.  

Table 4 Integer ambiguity resolution success rate for the zero baseline APM3-APM7 and the short 
baseline APM7-WUH2 with GPS, BDS-3 and Galileo on June 10, 2021 

Constellation APM3-APM7 APM7-WUH2 

GPS 2880/2880=100% 2786/2880=96.7% 

BDS-3 2880/2880=100% 2797/2880=97.1% 

Galileo 2880/2880=100% 2742/2880=95.2% 

GPS+BDS-3+Galileo 2880/2880=100% 2872/2880=99.7% 
 

 

Fig. 4 Horizontal (E = East and N = North) position scatter and vertical (U = Up) time series for 
the zero baseline APM3-APM7 

 

Fig. 5 Horizontal (E = East and N = North) position scatter and vertical (U = Up) time series 
for the short baseline APM7-WUH2 
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Based on a zero baseline, we analyzed 
receiver-related biases in the SD model with GPS, 
BeiDou navigation satellite system with global 
coverage (BDS-3) and Galileo, including differential 
code bias (DCB), differential phase bias (DPB) of the 
first frequency, and DPB. The number analysis 
showed two findings. First, the DPB of the first 
frequency was similar to DCB with centimeter 
accuracy and can be pre-corrected or estimated as 
time-invariants in RTK positioning. Second, DPB 
that is associated with phase observations only thus 
had sub-millimeter accuracy. However, DPB 
contained ambiguity of two frequencies, therefore 
can only be estimated as time-invariants.  

With the stability of receiver-related biases, the 
SD RTK performance of zero and short baselines was 
tested using GPS, BDS-3 and Galileo in terms of 
integer ambiguity resolution success rate and 
positioning accuracy. We found that the SD RTK with 
BDS-3-only can perform better than GPS-only and 
Galileo-only as more visible satellites are available. 
In addition, the SD RTK with GPS+BDS-3+Galileo 
can achieve higher performance than with a single 
constellation.  

This study preliminarily shows the stability of 
the receiver-related biases using zero baselines, 
which can be dynamically constrained to benefit RTK 
positioning. However, this work is limited to short 
baselines, and RTK positioning performance for 
medium and long baselines has not yet been covered. 
In addition, in multi-constellation scenarios, 
inter-system bias (ISB) is also a parameter of interest 
and can be dynamically constrained to improve 
positioning performance. The understanding and 
analysis of these works will be a point of interest for 
future research. 
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Abstract: There are many obstacles in the UWB 
indoor positioning, such as installation location 
limitation of base stations, non-line-of-sight and so 
forward. In this paper, the high-precision indoor 
positioning model was discussed, and then the UWB 
indoor positioning method was given based on the 
heterogeneous data constraints, such as PDR, map 
and vision. Three indoor positioning models, the 
kinematic adaptive robust EKF UWB model based on 
the gain matrix, the UWB/PDR/Map coupled model, 
and the UWB/Vision fusion model were built and 
assessed, respectively. Afterward, the precision and 
the potential application scenarios of the three models 
were discussed via the practical tests. The test results 
showed that, with our method, the overall positioning 
accuracy reached around ±0.2 m under the conditions 
of the full or partial UWB signal coverage, available 
or interrupted line-of-sight, or undergoing other 
situational challenges such as the sparse texture and 
the continuous variation of the light strength. 
Key words: Heterogeneous information; UWB; 
Robust EKF; Indoor location 

1 Introduction 

In spatial information science and engineering, the 
acquisition and processing of high-precision 
positioning information belong to the frontier 
research worldwide [1]. Many efforts have been made 
to consistently advance the techniques in this area, 

for example [2], the "Xihe" plan in China, the “Insight 
into the battlefield” and the “Next Generation 911 
Project” in US, and the “Galileo Local Technology 
Plan” in Europe. With the completion of global 
coverage of the BDS (Beidou System) and other 
global satellite navigation systems, the real-time, all-
weather operational condition, and global high 
precision PNT (Positioning, Navigation and Timing) 
are enabled to survey many outdoor applications [3,4]. 

With the indoor positioning and navigation 
techniques, even there are many options, such as 
WiFi [5], UWB (Ultra Wide Band) [6], RF (Radio 
Frequency) [7], and Bluetooth [8, 9], the meter-level 
positioning results may be easily to be achieved, 
however, developing the higher precision of indoor 
positioning techniques is still extremely challenging. 

Specifically, the UWB positioning can reach the 
accuracy level of decimeters or even centimeters by 
measuring the transmission time, the angle, and the 
strength of electromagnetic wave signals between a 
positioning tag and a base station [10].  When UWB is 
used in positioning, its methods can be divided into 
RSSI (Received Signal Strength Indication), TDOA 
(Time Difference of Arrival), AOA(Angle-of-Arrival), 
TOA (Time of Arrival), etc. The positioning based on 
RSSI needs to be modeled according to the signal 
propagation fading to realize ranging. It can not 
reflect the advantages of UWB when applied to 
UWB [11]. AOA can overcome the influence of NLOS 
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(Non Line of Sight) propagation to a certain extent 
and can locate with fewer sensors, but the cost is high 
due to the need to use antenna array and directional 
antenna angle measurement [12]. TOA can make full 
use of the advantages of high UWB time resolution, 
but the problem of clock synchronization at the 
transceiver must be solved first [13]. TDOA can 
overcome the problem of synchronization at the 
transceiver, but the synchronization between anchor 
nodes still needs to be considered [14]. 

However, due to the signal obstruction or 
reflection of variant structural objects and/or other 
solid features indoors, there may exist serious 
multipath effect, irregular LOS (Line of Sight) 
propagation, etc., which negatively affect the 
positioning accuracy, as well as the configuration of 
tags and base stations, pre-installation and 
measurement of the precise location of the base 
stations, etc., which restrict the positioning accuracy 
and even working area. Wymeersch [15] analyzed the 
characteristics of a large number of UWB signals in 
LOS and NLOS environments. Using SVM (Support 
Vector Machine, SVM) to identify the NLOS state 
and weaken the error can effectively eliminate the 
NLOS error and improve the ranging accuracy, but a 
large amount of data statistics is needed. Li [16] used 
Kalman filter to smooth the original ranging 
information and proposes a colored noise adaptive 
Kalman method to eliminate NLOS error. The 
simulation effect is obvious, but the amount of 
calculation is large. Meng [17] analyzed the geometric 
structure of the wall when the IR-UWB (Impulse 
Radio UWB) signal propagated through the wall, 
deduced the upper limit of the ranging error caused 
by the additional delay, and directly corrected the 
TOA ranging result by using the NLOS distance error 
information. This method requires more a priori 
knowledge and is difficult to be applied to the 
ranging elimination of moving targets. 

Essentially, INS (Inertial navigation system) used 
in PDR (Pedestrian dead reckoning) algorithm uses 
accelerometers, and gyroscopes to obtain position, 
velocity, and attitude information and plays an 
important role in the field of navigation and location 
services. But its sensor technology and integration 

calculation principle restrict its popularization. A 
standalone INS system is difficult to satisfy the 
demand of the long-term navigation and positioning 
accuracy requirements [18]. As a streaming media 
technology, the video sensors have the capability of 
positioning and the acquisition of the environmental 
information, and the relative positioning accuracy 
may reach 0.1% to 2% of the working ranges. 
However, one find the use the visual method very 
challenging in environments such as sparse textures, 
too bright or too dark indoors [19, 20].  In this case, 
these sensors to assist UWB for fusion positioning 
can effectively make up for the shortcomings of each 
system. Building a hybrid positioning system can 
enhance the continuity and robustness of positioning 
in complex indoor environment. Renaudin [21] 
designed an optimal combined filter to fuse the 
arrival angle and arrival time difference of UWB 
signal with the acceleration, angular velocity and 
magnetic field intensity output by MEMS inertial 
system, so as to further suppress the UWB NLOS 
error. Zhang [22] used extended Kalman filter to fuse 
MEMS, UWB and barometer to form a position and 
heading estimation system, and obtained more 
reliable vertical positioning results. Nyqvist [23] 
presented a method for global pose estimation using 
INS, monocular vision, and UWB sensors, and 
showed the benefit of the suggested sensor 
combination. Qiao [24] used the position information 
output by monocular vision ORB (Oriented Fast and 
Rotated Brief)-SLAM (Simultaneous Localization 
and Mapping) and the positioning information 
calculated by UWB as measurement information, and 
used extended Kalman filter for data fusion to realize 
indoor positioning, which effectively overcomes the 
problem of unable positioning caused by monocular 
vision ORB-SLAM tracking failure, and effectively 
suppresses the influence of UWB NLOS error. 

Our research has been targeting such problems 
mentioned above. This manuscript particularly 
discusses three different indoor positioning methods 
based on using UWB, PDR, and the vision sensors, 
and assesses the performance improvement with the 
proposed models. In the practical tests, the 
challenging environment were considered through the 
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reduction of the number of UWB base stations, 
varying the LOS obstruction, environmental texture 
and light strength through their influence on the 
indoor positioning accuracy. Afterward, the overall 
precision and potential application scenarios of the 
three methods were discussed based on the practical 
tests. 

2 Extended Kalman filter 

The classical Kalman filter is based on the linear 
system, that is, both the measurement model and the 
system model are linear systems. For discrete linear 
systems, the state equation can be described as: 

,k k k k k k− − − −= +1 1 1 1x x G wΦ                              (1) 

where, kx  represents the state vector, , 1k k −Φ  
represents the state transition matrix, 1k −G  represents 
the system noise drive matrix and 1k −w  represents 
the process noise vector. k  is represented as an 
observation epoch. 

Observation vectors and state vectors should 
simultaneously satisfy certain functional relationships. 
The observation equation of a discrete linear system 
can be expressed as: 

k k k k= +z H x v                                                 (2) 

where, kz  represents the system observation vector, 
kH  represents the observation coefficient matrix and 

kv  represents the observed noise vector. For a 
classical Kalman filter, the process and observation 
noise vectors should conform to the following normal 
distributions: 
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where kQ  and kR are the positive definite 
covariance matrices of process noise and observation 
noise vectors, respectively [25]. 

Kalman filter is a recursive estimation process 
based on system state and noisy observation sequence, 
which usually includes time update process and 
measurement update process. 

The time update process is as follows[26]: 

, 1 1
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where the symbols “ˆ”,  “-” and “+” represent the 

estimated, predicted, and filtered value, respectively. 
ˆ k

−x  and k
−P  are the state prediction and its 

covariance matrix at kt , 1ˆ k
+
−x  and 1k

+
−P  are the state 

estimate and its covariance matrix at 1kt − , 
respectively. 

The measurement updating process is as follows: 
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               (5) 

where, kK  is the filter gain matrix, which is 
calculated with the minimum state variance as the 
constraint condition. 

The predicted residual is as follows: 

ˆ ˆk k k k k k
−= − = −V z H x z z                               (6) 

Linear system is only an ideal system. In practical 
applications, system state models or observation 
models mostly contain non-linear characteristics. The 
EKF (Extended Kalman filter) is one of the most 
commonly used estimation method for nonlinear 
filtering problems in scientific and engineering 
applications. The system model is as follows: 

1 1 1( , )k k k k− − −=x f x w             (7) 

along with the observation model: 

( , )k k k k=z h x v                (8) 

The noise matrix of EKF non-linear system still 
satisfies the requirement of Formula (3). Before time 
update, the system needs to linearize the state 
equation by first order Taylor series expansion to get 
the state transition matrix and noise drive matrix, 
which can then be solved as KF. 
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At the same time, the observation equation needs 
to be linearized to obtain the observation coefficient 
matrix before updating the measurements. 

ˆk

k
k

−

∂
=

∂ x

hH
x

                                                (10) 

After the state equation and the observation 
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equation are discretized, the state can be updated by 
the methods of equations (4) and (5). 

3 The UWB indoor positioning with the 
heterogeneous information constraints 

3.1 The robust EKF using UWB 

Under the consideration that the motion process 
involves position, velocity and acceleration 
information, this paper proposes a 9-dimensional 
state vector UWB dynamic positioning model based 
on EKF model. The state vectors are as follows: 

[ ]k = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆     x x x x y y y z z z                    (11) 

where , ,∆ ∆ ∆ u u u  (u = x, y, z) represent the position, 

velocity and acceleration errors in the u direction, 
respectively. The accelerations can be considered as a 
first-order Markov process [27]. Both of the process 
noise vector and the observation noise vector are 
considered to the zero-mean white noise processes. 
The state coefficient matrix can be obtained from the 
motion model: 

,

,

,

0 0
0 0
0 0

x k

k y k

z k

Φ
Φ Φ

Φ

 
 =  
  

                        (12) 

with 
2

,

1
2

0 1
0 0 1

u k

TT

TΦ

 
 
 

=  
 
 
  

             (13)     

whereT  represents the time interval. The observable 
is the range from a UWB mobile station to each base 
station, and the spatial geometric distance P  is: 

( ) ( ) ( )2 2 2
i i a i a i aP x x y y z z= − + − + −  (14) 

where, ( ),,a a ax y z  is the location coordinates of 

UWB mobile station, ( ),,i i ix y z  is the coordinates of 

the i-th base station. After linearizing the above 

formula, the approximate coordinates ( )0 0, 0,a a ax y z  

of the mobile station tag are brought in as the initial 
value to obtain the observation equation: 

[ ]0i a a a a

x
P P l m n y

z

∆
∆
∆

 
 ′ ′= −  
  

             (15) 

with ( ) ( ) ( )2 2 2
0 0 0 0a i a i a i aP x x y y z z′ = − + − + − , 

0

0

i a
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−

=
′

 , 0

0

i a
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y ym
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−

=
′

 and 0

0

i a
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z zn
P
−

=
′
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Therefore, the observation matrix is: 

[ 0 0 0 0 0 0]a a aH l m n=  (16) 

But, when the observations contain gross errors, 
the state estimation will be biased so that the 
influence of gross errors in measurements cannot be 
ignored. In this paper we construct a robust EKF gain 
matrix that can restrict the effect of the gross errors 
on the state estimation as [28]: 

0
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0 1

1 0

10

ij j

j
ij ij j

j

j

s c

c sc c s c
s c c

s c

                             ≤


−  
= × × < ≤  −  

                             > 



K

K K  (17) 

where, 0c  and 1c are robust parameters. 0c  is 2.5-3.5, 

1c is 3.5-4.5[28]. 

,j k j j js V r s=                       (18) 

where i represents the i-th component in the state 
vector, and j represents the j-th component in the 

observation vector, ,k jV ， jr  and js represents the 

prediction residual(Equation 6), redundancy index [29] 

and a-priori standard deviation of the j-th observation, 
respectively. At epoch k, the redundancy index rj of 
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the j-th observation is generally defined by: 

( ) ( ( ) ( ))
yi V y ir k k k= Q W                          (19) 

where ( )
yV kQ  is the covariance matrix of the 

residual vector and ( )y kW  is the weighting matrix 

of the observation vector under the assumption of a 
diagonal matrix. The covariance matrix of the 
residual vector for the observation vector is: 

( )
y

T
V k k k kk −= +Q H P H R                             (20) 

3.2 The UWB/PDR/Map fusion 

The range and its accuracy from the UWB indoor 
positioning technique are restricted by the number of 
the base stations and their distribution. The 
positioning performance degrades if the UWB signals 
become weak. Sometime, the UWB system may even 
become unavailable. Hence, the integration of UWB, 
PDR (pedestrian dead reckoning) and Map is 
introduced. The corresponding EKF is designed to 
include the position errors dN and dE , the moving 
distance error ds and the heading error dθ in 

its state vector [30]: 

[ ]T
k ddsdEdN θ=x                                           (21) 

According to the PDR motion model, the state 
transition matrix should be: 

1 0 cos sin
0 1 sin cos
0 0 1 0
0 0 0 1

Φ

− 
 
 =
 
 
 

k k k

k k k
k

s
s

θ φ
φ θ

            (22) 

When the position of the UWB system is 
updated, the position difference between the UWB 
and PDR system is taken as the observation as 
follows: 

, , , ,[ ] [ ]T
k k u k p k u k pN  E N N  E E= ∆ ∆ = − −z (23) 

Then the observation matrix is： 

1 0 0 0
0 1 0 0kH  

=  
 

                                   (24) 

where N∆  and E∆  are the north and east position 
differences between the two positioning systems, 

,k uN and ,k uE  are the north and east UWB positions, 

,k pN and are the north and east positions 

calculated according to the PDR algorithm at time k. 

When the output of the UWB position is not 
updated, the differences between the system 
prediction coordinates and the PDR observation 
coordinates are taken as the observations, and the rest 
remains unchanged, and the PDR position is 
recursively corrected.  

The position errors obtained through filtering are 
used to update the predicted positions at the current 
time. So, the final position is updated as follows [31]: 

, ,

, ,

p k p k

p k p k

N N dN
E E dE

+

+

 = +
 = +

                                                        (25) 

In order to suppress the divergence of the 
heading estimate obtained from the INS, we match 
the position with the indoor map based on the UWB 
positioning result, and virtually design 16 possible 
equally spaced directions around this position, i.e., 
every other 22.5 degrees. The direction of the center 
of the section is adopted as the moving direction of a 
pedestrian. Relative to the heading angle of the 
inertial navigation system, the center direction of the 
nearest interval is used as the heading. If the 
difference between the heading from the inertial 
navigation and the nearest map direction is less than 
5 degrees, the heading angle of the inertial navigation 
is used as the current heading [30]. 

 
Fig.1 Heading angle calculating strategy 

3.3 UWB/Vision Fusion 

Visual sensors can be used not only for 
positioning during emergency rescues such as urban 
fires and earthquakes, but also for acquiring the 
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environment information to compensate the UWB's 
insufficient environmental perception. However, the 
visual positioning technique is affected by a single 
texture, light and dark changes, etc., which are prone 
to positioning failure. Moreover, monocular vision 
SLAM (simultaneous localization and mapping) 
suffers from scale drift and axial blur. For this reason, 
upon the UWB EKF positioning model and the 
monocular vision SLAM model [32], a UWB/vision 
fusion model is proposed here for indoor positioning 
under the consideration of the visual scale factors and 
heading deviations [33] with the following state vector 

at kt : 

[ ]T
k k k k k k k=x X Y v sθ ϕ            (26) 

where, kX  and kY  represent plane coordinates, 

kv  represents pedestrian speed, kθ  represents the 
angle of movement direction, ks  represents the 
ambiguity of the scale, and kφ   represents the 
deflection angle between the plane coordinates 
calculated by vision and the plane coordinates 
calculated by UWB. 

According to the error equation of vision and 

UWB, the corresponding state equation is: 

1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 0

x

y

v
k k

s

sin
cos

θ

θ
θ

+

   
   
   
   

= +   
   
   
   
   

w
w
w

x x
w
w

(27) 

Where xw  and yw  respectively represent the 

plane position error, vw , θw  and sw   represent the 

speed error, heading angle error and visual scale 
factor error respectively. If the visually measured 
position, heading, and the UWB measured position 
are taken as the observations, the UWB/vision 
observation equations are as given below: 

1 0 0 0 0 0
0 1 0 0 0 0

uwb
uwb

uwb

   
= +   

  

X
X e

Y
 (28) 

0 0 0
0 0 0

vision vision
vision

vision vision

cos sin
sin cos

φ φ
φ φ

−   
= +   

   

X X
X e

Y Y
           (29) 

wherein visionX and visionY  are the position 
coordinates derived from the vision sensor,  uwbX  
and uwbY  are the position derived by UWB, visione is 
the vision position measurement noise vector, and 

uwbe  is the UWB position measurement noise vector. 

4 The Multisource indoor positioning 
fusion framework 

In order to overcome the obstacles that are oftern 
faced in UWB indoor positioning technique, the 
robust EKF UWB positioning model based on 

adaptive gain matrix, the UWB/PDR/map integrated 
positioning model and the UWB/vision integrated 
positioning model shown in Figure 2 have been 
proposed, repectively, and used to improve the UWB 
indoor positioning technique inclusive of reducing 
the number of the UWB base stations and the impact 
of the indoor non-line-of-sight, as well as the indoor 
environment perception, frequent changes in light 
and localization of areas with sparse texture. 
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Fig. 2 Heterogeneous information fusion positioning framework 

5 Results and their analysis 

5.1 UWB robust EKF positioning results analysis 

The UWB equipment used in this paper is shown 
in Figure 3, which can be set as base station or 
mobile station by command, and automatically 
change the working mode. The equipment mainly 
consists of UWB chip, 4G communication module 
and a package structure. When it is set as a mobile 
station, it can measure the distance between it and 
each base station, and transmit the distance 
information to the upper computer system through 
4G module. Its performance is shown in the Table 1. 

 

Fig.3 UWB anchor and tag two-in-one device 

Table 1 Performance of UWB anchor and tag 
two-in-one device 

Performance Parameter 
Size 12.5*9.5*2cm 

Receiving sensitivity -118dBm 
Ranging accuracy ≤12cm 

Positioning accuracy  ≤30cm 
Line-of-sight ranging distance Max 800m 

Positioning sampling rate 1Hz 

The experimental scene is on the laboratory floor 

(as shown in Figure 4), and the corridor is about 65m 
long and 3M wide. Several positioning base stations 
(red triangle in the figure in Figure 5) are set in the 
classroom and corridor, and their point coordinates 
are determined by the total station to establish a 
relative coordinate system. The experimenter walked 
at a constant speed (from left to right) along the 
established route with UWB mobile station, as shown 
in Figure 5, the trajectory results of different 
algorithms are showed. 

 

Fig.4 Experimental environment 
Figure 6 shows the positioning errors resulted 

from least squares, EKF and the robust EKF method 
in this paper. It can be seen that the three positioning 
trajectories well agree with the real trajectory. The 
2D root mean square error was ±1.18m from the least 
square method. The same root mean square error was 
±0.28m from the EKF and ±0.13mfrom the proposed 
method, from which 94% of the point error was 
better than ±0.50m, and 6% of the point error 
between ±0.50m-±1.00m. 
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Fig.5 Positioning result track            
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(a) Least square positioning error 
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(b) EKF positioning error 
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(c) Robust EKF positioning error 

Fig.6 Positioning trajectory and errors 

5.2 UWB/PDR/Map Fusion 

5.2.1 UWB with full signal coverage 

In this experiment, a  MEMS IMU named 
MPU9250 is used, which has 9-axis accelerpmeter, 
gyroscope and magnetometer producted by 
InvenSense Company(Sunnyvale, CA,USA). Some 
of its performance parameters are as Table 2. During 
the experiment, UWB and IMU were bound to the 
instep of the experimenter, as shown in Figure 7. 

 

Table2.  MPU9250 partial parameters 

Performance Parameter 
Operating Voltage 

Supply 
2.4V to 3.6V 

Gyro Full Scale Range ±250 ±500 ±1000 
±2000  °/s 

Gyro Rate Noise 0.01 dps/Hz 
Gyro Sensitivity Scale 

Factor 
TYP 32.8 
LBS/(°/s) 

Gyro Rate Noise 
Spectral Density 

0.01d°/s/√ Hz 

Accel Sensitivity Scale 
Factor 

4,096 LSB/g 

Accel Noise Power 
Spectral Density 

300μg/√ Hz 

Accel Full Scale 
Range 

±2  ±4  ±8  ±16 g 

Accel Sensitivity ±4800 LSB/g 
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Fig.7 Equipment placement 

For the best performance, an ideal working 
environment was introduced for conducting our 
experiments, in which the UWB signal covered the 
entire positioning area. 12 UWB base stations cover 
part of the corridor and a laboratory, as shown in the 
red triangle in the Figure 8. The experiment takes the 
north as the Y axis and the East as the X axis.  

So, as in Figure 8, the positioning trajectories 
from the UWB, unconstrained PDR, and map-
constrained PDR could be obtained. The UWB 
positioning result was basically coicided with the 
actual trajectory and had the root mean square errors: 

±0.13m in the X direction and ±0.16m in the Y 
direction. However, due to the low positioning 
frequency (1 Hz) of UWB and the long time interval 
of updating the position information, it is easy to 
cause the problem of positioning discontinuity at the 
corner. The PDR positioning track has ranged from 
indoor to outdoor and had the root mean square errors 
about ±1.55m in the X direction and about ±2.06m in 
the Y direction. The PDR positioning method on map 
constraints escaped from the above situation, and its 
solution was in good agreement with the real 
trajectory, but  early or late turns did happen. The 
corresponding root mean square errors were about 
±0.25m in the X direction and about ±0.40m in the Y 
direction. By using this method, the estimated 
trajectory was basically consistent with the actual one, 
and further the integration with the PDR data, the 
positioning rate was improved, and the problem of 
discontinuous positioning at the corner is avoided. 
The solution had the root mean square errors of about 
±0.15m in the X direction and about ±0.18m in the Y 
direction. 

 
Fig.8 UWB location results with the full signal coverage 

5.2.2 UWB partial coverage scenarios 

In order to study the UWB performance with the 
partial singal coverage, two signal lock-out scenarios 
were simulated. Figure 9(a) shows the scenario where 

the UWB signal lost lock three times, and the time 
interval of each loss of lock was 5 seconds. Figure 
9(b) shows the scenario where UWB signals were 
only available at both ends of the corridor and 
indoors.  

 
(a) Locate the track when the signal is out of lock 3 times 
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(b) Locate the trajectory when most UWB signals in the corridor lose lock 

Fig.9 Positioning results when UWB signal is partially covered 

A summary is given here. The blue line in 
Figure 9 represents the UWB positioning track, with 
the missing parts where the UWB signals were not 
available. As can be seen, with the UWB signals, 
high-precision positioning can still be achieved. In 
the uncovered area, even if there was no UWB 
positioning result, the positioning was still achieved 
with the aid of PDR data. However, the positioning 
accuracy was quickly droped down as only the map-
constrained PDR positioning result was made 
available in 1-2 seconds after the UWB signal lost 
lock. The quantitative analysis of the results in 
Figures 9(a) and 9(b) gave the root mean square 
errors of about ±0.11m in the X direction and  about 
±0.20m in the Y direction from the former. From the 
latter, the root mean square error of X direction was 
about ±0.19m and the Y direction was about ±0.38m, 
which means that, when indoors, the base station 
equipment was located on the ground and affected by 
non-line-of-sight, the positioning accuracy was 
degraded. In addition, the availability of the UWB 
positioning solution was low, which resulted in an 
increased trajectory inconsistency at short-distance 
turns, further with increasing of the positioning errors. 

5.3 UWB/visual fusion 

5.3.1 Experiments in light change environment 

The camera used in the experiment is the 
Guardian camera(Figure 10) purchased by Taobao, 
and its performance parameters are shown in the 
Table 3. The experimental scenario is shown in the 
Figure11. We placed four UWB base stations in four 
corners of the laboratory. The experimenter held the 
camera and UWB bound together and circled 

clockwise three times along the established route. 
            

 
   Fig.10 Guardian camera                    Fig.11 

Experimental scene 
 
 
 

Table 3.Performance of the Guardian camera 

Performance Paramete
r 

Frame rate(FPS) 10 
Fx(pixels) 3637.74 
Fy(pixels) 3658.25 

Resolution(pixels
) 

1920 * 
1080 

Brightness mode AUTO 

When a camera faces the window, the brightness 
of its images will decrease, especially when it is 
rotating. Conversely, when it faces the opposite 
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direction, the brightness will increase. Frequent 
changes in light brightness may cause SLAM 
positioning to fail. Figure 12 shows the positioning 
results from UWB, vision and their fusion. The blue 
circles and red triangles in the figure represent the 
location points from the UWB and the combination 
of UWB and vision, respectively, while the blue line 
represents the actual trajectory. Besides, Figure 12(b) 
presents the visual location result while Figure 12(c) 
plots the positioning errors of the UWB/vision fusion 
solution. From Figure 12(a), most of the UWB 
positioning results were consistent with the designed 
route, but there were also a certain number of the 
positioning points with large differences from the 
actual route, for example, the points at the left bottom 
corner, on the top and at some other positions. The 
2D root mean square error was ±0.32m. From Figure 
12(b), firstly, some of the results accurately described 
the walking trajectory; secondly,the monocular 
positioning method only delivers the relative 
positioning information; thirdly, a few of the factors, 
such as sparse texture, brightness changes and in-situ 
turns etc., caused positioning failures many times. 
Finally, in the process, although SLAM's loopback 
detection and back-end optimization improved the 
positioning results, there were still some large errors 
at the upper right corner. In the fusion positioning 
results, almost all the red dots were distributed on 
both sides of the actual route, which indicated that 
the integrated solution was more accurate than the 
solution using the UWB technique alone and gave the 
2D root mean square error of ±0.18m. In addition, the 
fusion algorithm also functions to limit the visual 
positioning errors (Figure 12(b)) and solve the 
problem due to the scale blur. 
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(c) Fusion positioning errors 

Fig.12 Location results of UWB / vision fusion 
in light changing environment 

5.3.2 Experiments in sparse texture environment 

Figure 13 shows the positioning results in the 
sparsely textured corridors and classrooms with white 
walls. In Figure 13(a), the red and blue curves present 
the UWB and the UWB/vision integrated positioning 
results, respectively,  while the green curve presents 
the real trajectory. The integrated positioning results 
were  in good agreement with the actual trajectory 
and had the root mean square error of ±0.17m. In the 
integration, UWB provides the absolute positioning 
information and also functions as the initial vision 
positioning parameters. In case the vision positioning 
fails, the positioning can be resumed on the spot, 
thereby the continuous positioning is ensured. Figure 
13(c) plots the positioning errors, in which the blue 
line is for UWB, and the red line for the UWB/vision 
fusion. From our analysis, about 53% of the points 
from the integrated solution were at an accuracy level 
of ±0.1 meters, about 22% at an accuracy of ±0.1-
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±0.2 meters, 25% at an accuracy of ±0.2-±0.3 meters, 
and 10% at an accuracy of ±0.3-±0.4 meters. 

 
(a) UWB/visual fusion positioning results 

 
(b) UWB positioning residual 

 
(c) Residual distribution curve 

Fig. 13 Results from the UWB/vision fusion in 
sparse texture environment 

 

6 Conclusions 

To have aimed at the problems in the UWB indoor 
positioning, whose performance has been restricted 
by the location and number of available base stations, 
indoor non-line-of-sight and the inability to perceive 

the indoor environment in real time, this paper 
proposed a positioning approach based on 
heterogeneous information constraints such as UWB, 
PDR and vision. The UWB positioning model based 
on robust EKF can adjust the gain matrix according 
to the predicted residuals to reduce or eliminate the 
influence of gross errors on the state vector. The error 
in 2D planar positioning was about ±0.13m. 
Compared with the least squares and EKF algorithms, 
the positioning accuracy was increased by 88.98% 
and 53.57%, respectively. Apparently, UWB provides 
the absolute spatial reference for the PDR positioning 
and suppresses the divergence of the PDR positioning. 
At the same time, the use of the PDR technique in 
our experiments increased the positioning availability 
of the UWB technique, complementarily solved the 
positioning problem caused by poor UWB signal 
coverage or fully obstructed areas, and helped with 
indoor maps to suppress the PDR heading divergence 
and positioning divergence. The fusion positioning 
model based on UWB/vision nicely solved the 
problems of the scale errors in monocular vision 
SLAM, frequently required re-initialization due to 
environmental factors (resulting in discontinuous 
positioning), and the challenges due to sparse 
textures or frequent lighting changes in indoor 
environments, and achieved a positioning accuracy of 
±0.2m. 

Although the integrated positioning strategy based 
on multi-source heterogeneous information has made 
great progress, it is still facing certain difficulty to 
satisfy the requirements of indoor and outdoor high-
precision seamless positioning in emergency rescues 
such as urban fires and earthquakes. Therefore, the 
multi-sensor fusion that integrates positioning and 
scene perception, and wearable or simply assembled 
devices, when one conducts the positioning in 
complex environments, is still our next focus. 
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Abstract: This paper comprehensively analyzes 
the inter-frequency data quality of the 
quad-constellation Global Navigation Satellite 
System (GNSS) of GPS, GLONASS, BDS and 
Galileo on a smartphone. A series of indices, i.e. the 
number of visible satellites, data integrity rate, 
multipath, carrier-to-noise ratio (C/No), cycle-slip 
ratio and observation residuals, are employed to 
evaluate the data quality with a comparison between 
different constellations and frequencies. Experiments 
were conducted using the firstly released 
dual-frequency smartphone of Xiaomi Mi8. The 
results show that the GPS and BDS exhibit the best 
tracking performance in an open-sky environment 
with an average of 7 observed satellites at each epoch, 
which is 3 or 4 satellites more than the Galileo and 
GLONASS. In addition, the GPS data integrity rate is 
higher than the other constellations by about 
20%-25%. The GPS suffers a multipath effect two 
times larger than the Galileo on the L1/E1 
frequencies, but they are almost equal on the L5/E5a 
frequencies. For all four constellations, the C/No is 
mostly concentrated at 20-35 dB-Hz. Further, the 
C/No on the L1/E1 frequencies increases by 3-4 
dB-Hz over the L5/E5a frequencies. The GLONASS 
observations exhibit the most serious cycle slip 
occurrence rate at a ratio of 100, which is 
significantly larger than the other constellations. 
Regarding the residuals, the phase RMS residuals for 
all four constellations are at a few millimeters, 
whereas the pseudorange residuals of GLONASS are 

the most prominent with an RMS of over 6 m, which 
is 3-4 times larger than the other constellations. The 
precise point positioning (PPP) results show that the 
convergence time and positioning accuracy can be 
effectively improved by adding GPS and Galileo data 
at L5/E5a. 

Key words: smartphone; GNSS; quad-constellation; 

inter-frequency; data quality 

1.  Introduction 
Smartphones play an important role to promote 

the social and technical development in the age of 
mobile Internet. However, most smartphone 
applications depend on location information. In 
recent years, the demand for smartphone-based 
high-precision positioning services is increasing. In 
May 2016, Google announced to open the GNSS raw 
data interface for Android smartphones, which 
creates a condition for smartphone’s high-precision 
positioning applications. However, most smartphones 
typically use linear polarized antennas due to limited 
space [1], resulting in degraded GNSS data quality 
when compared with the geodetic GNSS receivers, 
which largely restricts smartphones’ positioning 
performance. Evaluating smartphones’ GNSS data 
quality can aid to adopt appropriate strategies or 
develop suitable algorithms to reduce its negative 
effect.  

Since the GNSS observation quality has a big 
impact on the positioning performance, the 
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smartphone GNSS data quality analysis has become a 
hot research subject. [2] firstly evaluated the raw 
GNSS observation quality on Android smart 
terminals and demonstrated that the pseudorange 
observations can only provide meter-level positioning 
accuracy, while the carrier-phase observations have 
the potential for centimeter-level positioning. [3] 
further compared the Nexus 9 tablet, Samsung 
Galaxy S8 smartphone and Huawei Honor v8 
smartphone with the geodetic receiver in terms of the 
GNSS observation noise and concluded that the 
pseudorange observation noise of Nexus 9 is 10 times 
greater than the survey-grade receiver, while the 
carrier-phase observation noise is 3-5 times greater. 
By contrast, the observation noise of the latter two 
smartphones is much worse because of a duty-cycle 
issue. Meanwhile, smartphone observations are easily 
subject to gross errors [4]. Another major difference 
between the smartphone and geodetic receiver is the 
carrier-to-noise density ratio (C/No). The C/No of a 
smartphone is typically 10 dB-Hz lower than that of a 
geodetic receiver [2,5]. Meanwhile, the smartphone 
C/No varies rapidly even for the case at high satellite 
elevations [3]. Further, the smartphone C/No is more 
relevant to the pseudorange noise than the satellite 
elevation angles [6,7]. The duty cycle is a unique 
power-saving mechanism equipped in most 
smartphones. [7] and [4] show that the phase and 
pseudorange measurement inconsistency will 
increase and the accuracy of the doppler 
measurement will be reduced from cm/s to dm/s 
when the duty cycle mechanism is turned on. 
Fortunately, this mechanism can be turned off since 
the 9th version of the Android operating system was 
released in 2017 to acquire consecutive carrier-phase 
observations, which provides a possibility for 
carrier-phase-based high-precision positioning. 
Additionally, smartphone tests demonstrate that the 
linearly polarized antenna embedded inside 
smartphones is very sensitive to the multipath effect, 
which makes the multipath effect become a main 
error source in the smartphone-based GNSS 
positioning [8]. 

The integrated multi-frequency and 
multi-constellation GNSS positioning has become an 

inevitable trend. Data quality is vital to determine the 
positioning performance. This study presents a 
comprehensive comparative analysis on 
inter-frequency and inter-constellation smartphone 
GNSS data quality. The Xiaomi Mi8 smartphone is 
used to collect the GNSS observations for a case 
study since it is the first one to support the 
dual-frequency and quad-constellation GNSS signals. 
The data quality characteristics are comprehensively 
analyzed by means of indices such as the number of 
visible satellites, data integrity rate, multipath effect, 
carrier-to-noise ratio, cycle-slip ratio and observation 
residuals. 

2.  Methodology 

The data integrity rate is capable of reflecting 
the lack rate of GNSS data, and thus it is usually used 
to assess smartphones’ GNSS signal reception 
capability. The data integrity rate can be expressed as 
a ratio of the actual received data ( s

jA ) against the 
theoretical received data ( s

jT ):  

/s s s
j j jRatio A T=     (1) 

where s  and j  denote the satellite and frequency, 
respectively. The theoretical reception data is 
calculated based on the satellite elevation mask angle 
and broadcast ephemeris [9]. 

The multipath effect is a major error source in the 
smartphone-based positioning. The multipath effect 
at an epoch ( iM ) can be estimated using the 
multipath combination [10,11]:  

2 2 2

2 2 2 2

2
i i j j

i j j
i i

i j i j

f f f
M P

f f f f
j λ j λ

+
= − +

− −
   (2) 

where i and j  ( i j≠ ) denotes two different 
frequencies. P  is the pseudorange observation. j  
is the carrier-phase observation. λ  is the wavelength 
at the corresponding frequency f . iM  contains 
multipath effect, ambiguity term and hardware delay 
biases. The latter two items are stable and thus can be 
obtained by calculating the mean value of iM  at 15 
consecutive epochs free of cycle slips [9], which is 

denoted as iM . Therefore, the multipath effect ( iMP ) 

can be derived as: 
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i i iMP M M= −     (3) 
The cycle slip ratio (CSR) reflects the stability of 

the carrier phase observations. The more cycle slips 
occur, the more challengeable to achieve 
high-precision positioning solutions. The CSR is 
defined as the number of cycle slips every 1,000 
epochs to reflect the occurrence frequency of cycle 
slips, as seen in Eq. (4):  

1000CSR
o n

=  (4) 

where n  is the number of epochs when cycle slips 
occur and o  is the number of all observed epochs. 
The geometry-free (GF) combination method [12] 
and the Melbourne–Wübbena (MW) method [13,14] 
are jointly used to detect dual-frequency cycle slips, 

whereas the code minus phase method and the loss of 
lock indicator (LLI) are jointly used to detect the 
single-frequency cycle slips [15].  

To extract the observation noise, a zero-baseline 
method is commonly used [10,16]. But for 
smartphones, the zero-baseline method is difficult to 
be applied due to the inseparable receiver and 
antenna. In this study, we employ the four-order 
differential method to analyze the noise of 
observations [17]. First, an inter-satellite differencing 
operation is made to eliminate the receiver clock 
offset by choosing the highest-elevation satellite as a 
reference satellite. The inter-satellite single 
differences of pseudorange and carrier phase 
observations are derived as:  

, , ,, , , ,+ m n m n
or

mm n m n n m n m n
Pb rP dt c dt dI dTρ ε∇ = ∇ ∇ + ⋅∇ +∇ +∇ +∇  (5) 

,, , , , , , ,+m n m n m n m n m n m nm n m n
orb rdt c dt N dI dT jλ j ρ λ ε∇ = ∇ ∇ + ⋅∇ + ⋅∇ ∇ +∇ +∇−  (6) 

where ∇  is the single difference operator and m , n  
denote the reference and non-reference satellites, 
respectively. P  and j  represent the pseudorange 
and carrier-phase observation, respectively. ρ  is the 
geometric range between the receiver and satellite. 
c  is the light speed.  𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜  and rdt  are the 
satellite orbital error and clock bias . dI 、dT  denote 
the ionospheric and tropospheric delay errors, 
respectively. λ  is the carrier phase wavelength, N  
is the ambiguity term, and ε  is the observation 
noise term.  

Secondly, the three-order differences of , ( )m nP t∇  
between epochs are further made to eliminate 
systemic biases [3]. To simplify the expression, we 
set , ( )= ( )m nP t SD t∇ . According to the error 
propagation law, the pseudorange observation noise 
is obtained below: 

( 3) 3 ( 2) 3 ( 1) ( )( )
2 10

P P P P
P

SD t SD t SD t SD ttε + − + + + −
= (7) 

Similarly, the carrier phase observation noise can 
be obtained as: 

( 3) 3 ( 2) 3 ( 1) ( )
( )

2 10
SD t SD t SD t SD t

t j j j j
jε

+ − + + + −
= (8) 

3.  Data quality analysis of smartphone GNSS 
observations  

3.1 Data description 

A Xiaomi Mi8 smartphone equipped with a 
Broadcom BCM47755 chip and a linear polarization 
antenna is used for data collection with an open-sky 
view in static mode. The station is located on the top 
of mining building at Central South University, China, 
as displayed in Figure 1. The observation was made 
on November 23, 2019 from GPS time 2:00 to 12:00 
with a data sampling interval of 1 s. The software of 
Geo++ Rinex Logger (V2.1.3) is used to transform 
the raw data information into the standard RINEX 
3.02 format data. The Xiaomi Mi8 smartphone can 
receive quad-constellation signals at the same time, 
including GPS, GLONASS, BDS, and Galileo, but 
dual-frequency data can only be acquired from GPS 
and Galileo L1/L5 and E1/E5a signals, and the rest 
observations are all single-frequency data. The 
received GNSS signals come from GPS satellites of 
BLOCK IIA, BLOCK IIR, BLOCK IIR-M and 
BLOCK IIF, GLONASS satellites of GLONASS-M 
and GLONASS-K1, BDS satellite of GEO 
(Geosynchronous Earth Orbit), IGSO (Inclined 
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Geosynchronous Satellite Orbit) and MEO (Medium 
Earth Orbit), and Galileo satellites of Galileo-1 and 
Galileo-2.  

 
 Figure 1 Smartphone data collection on the top of mining 

building at Central South University 

3.2 GNSS signal reception capability analysis 

Figure 2 shows the number of satellite 
observations for each satellite type and signal 

frequency. As can be seen from Figure 2(a), the 
Xiaomi Mi8 smartphone has the best ability to 
capture GPS signals. In the entire observation period, 
over 20 GPS satellites can be tracked. The 
GLONASS and BDS are followed with more than 10 
satellites. It is noted that the carrier phase signal 
reception ability is slightly weaker than its 
pseudorange signal. In Figure 2(b), it is seen that only 
one BDS GEO satellite was observed, which suggests 
that the linearly polarized antenna is probably 
insensitive to the high-orbit GEO signals. Due to the 
limited number of GPS BLOCK IIF satellites, the 
observation number on the L5 frequency is almost 
half of those on the L1 frequency for GPS satellites. 
Unlike GPS, the numbers of the Galileo observations 
on the E1 and E5a frequencies are equal. 

 

 
Figure 2 Number of observed satellites for different frequencies (a) and satellite types (b) 

Figure 3 depicts the number of visible satellites 
for different constellations and frequencies during the 
entire observation period. On average, 7.8, 3.4, 7.5, 
and 3.5 satellites are tracked for GPS, GLONASS, 
BDS, and Galileo on the L1/G1/B1/E1 frequencies, 
and 2.5, 2.7 satellites are tracked for GPS and Galileo 
on the L5/E5a frequencies, respectively. It is obvious 
that an average of over 6 GPS and BDS satellites on 
the L1/B1 frequencies can be observed, while the 
observed Galileo and GLONASS satellite number on 
the E1/G1 frequencies is significantly less with an 
average of about 4. This demonstrates that the GPS 
and BDS satellites can be tracked more easily when 
compared with the Galileo and GLONASS satellites. 

That is probably dependent on the GNSS chip and 
antenna embedded inside the smartphone. In addition, 
the average tracked numbers of GPS BLOCK IIF and 
Galileo satellites are 3.0 and 3.5 at each epoch on the 
L1/E1 frequencies, which are more than those on the 
L5/E5a frequencies by about 17% and 30%. This 
indicates that the Xiaomi Mi8 smartphone has a 
greater tracking ability for the L1/E1 signals than the 
L5/E5a signals. 

The pseudorange and carrier phase data integrity 
rates for different constellations and frequencies 
during the entire observation period are listed in 
Table 1. The average data integrity rates for 
GPS/GLONASS/BDS/Galileo constellations are 
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60.3%, 37.6%, 38.2% and 35.5%, respectively. The 
results reveal that the GPS data integrity rate is 
20%-25% higher than the other constellations. 
Meanwhile, the data integrity rate for the L5/E5a 
signals is obviously lower than the L1/E1 signals on 
the whole. Further, the carrier phase observations are 
more prone to missing data than the pseudorange 
observations, especially for L5/E5a signals. The 
maximum difference for different constellations 
exceeds 20%. 

 

Figure 3 Number of visible satellites for different 

constellations and frequencies 

 
Table 1 Data integrity rate of different observations for 

each frequency and constellation 

Satellite 

type 

Pseudorange Carrier phase 

L1/E1/G1/B

1 

L5/E5

a 

L1/E1/G1/B

1 

L5/E5

a 

GPS 75.1 61.2 60.1 44.6 

GLONAS

S 
40.2 - 

35.0 - 

BDS 42.9 - 33.5 - 

Galileo 38.4 41.3 34.9 27.2 

3.3 Analysis of C/No, multipath and cycle slip 

Figure 4 depicts the frequency distribution 
histogram of the C/No at two different frequencies 

and four different constellations. The corresponding 
RMS statistical values are also displayed in Figure 4. 
For a geodetic receiver, the C/No generally varies 
from 35 dB-Hz to 55 dB-Hz [4,7], while the C/No of 
the Xiaomi Mi8 smartphone is primarily concentrated 
at 20-35 dB-Hz for all constellations and frequencies, 
which is typically 15-20 dB-Hz lower than that of 
geodetic receivers. The C/No of the BDS B1, Galileo 
E5a, and GPS L5 signals are more concentrated 
below 30 dB-Hz while the C/No of the GLONASS 
G1, GPS L1 and Galileo E1 signals are mostly 
distributed in the range of over 30 dB-Hz. The C/No 
RMSs of four constellations on the L1/E1/G1/B1 
differ less than 2 dB-Hz. Further, the C/No one the 
L1/E1 frequencies is stronger than that on the L5/E5a 
frequencies by over 3-4 dB-Hz, indicating that there 
exists a noticeable difference for the power of the 
signal at the two different frequencies.  

 
Figure 4 Frequency distribution histogram of 

carrier-to-noise ratio 

Figure 5 shows the pseudorange multipath effects 
and the carrier phase cycle slip ratios. Based on Eq.(2) 
and Eq.(3), the pseudorange multipath effect of GPS 
and Galileo are acquired using dual-frequency 
observations and displayed in Figure 5 (a) along with 
its RMS statistical values. It is obvious that the GPS 
and Galileo pseudorange multipath RMSs are about 
2.1 m and 1.3 m on the L1/E1 frequencies, and 0.6 m 
and 0.7 m on the L5/E5a frequencies, which are 
nearly 10 times larger than that of the geodetic 
receivers in an open area [18]. Further, the GPS 
pseudorange multipath effect is almost two times 
larger than the Galileo on the L1/E1 frequencies. For 
both constellations of GPS and Galileo, the 
pseudorange multipath effect is larger on the L1/E1 
frequencies than the E1/E5a frequencies by about 71% 
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and 46%, respectively.  

Figure 5 (b) shows the cycle-slip ratio for four 
constellations. Although the cycle slip detection is 
insensitive to single-frequency small cycle slips, the 
GLONASS observations still are found to contain 
cycle slips at over 100 epochs every 1,000 epochs. 
By contrast, the cycle slip ratio for geodetic receivers 
is usually less than 10 [19], indicating that the 
smartphone GLONASS observations are susceptible 
to lock-lose. On the contrary, the BDS has the lowest 
cycle-slip ratio at about 14 as compared to the other 
constellations. 

3.4 Analysis of observation residuals 

The pseudorange and carrier-phase observation 
residuals can well reflect the observation quality. 
Figures 6 and 7 show the sequences of pseudorange 
and carrier phase observation residuals for different 

constellations. Their corresponding RMS residuals 
statistical values with respect to different satellite 
types are listed in Table 2. Part epochs’ residuals are 
not displayed as inter-satellite single-difference 
operation cannot be made due to the number of 
satellites is less than two. 

 

Figure 5 Pesudorange multipath effects (a) and carrier 

phase cycle slip ratio (b)  

 

 
Figure 6 Pseudorange observation residuals for different GNSS constellations 
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Figure 7 Carrier phase observation residuals for different GNSS constellations 

 

 
 

Table 2 RMS statistics of pseudorange residuals and 

carrier phase residuals 

 

Satellite 

type 

Pseudorange / m Carrier phase / cm 

L1/E1/G1/B1 L5/E5a L1/E1/G1/B1 L5/E5a 

GPS BLOCK IIA - - - - 

BLOCK IIR 2.45 - 0.49 - 

BLOCK IIR-M 2.23 - 0.46 - 

BLOCK IIF 2.54 0.90 0.49 0.76 

Galileo GAL-1 2.32 1.08 - - 

GAL-2 1.21 0.88 0.43 0.78 

GLONASS GLO_K1 - - - - 

GLO_M 6.18 - 0.49 - 

BDS GEO - - - - 

IGSO 1.63 - 0.52 - 

MEO 1.70 - 0.47 - 

According to Figure 6 and Table 2, it is apparently 
that the GPS and Galileo pseudorange observation 
accuracies on the L5/E5a frequencies are better than 
those on the L1/E1 frequencies. The GPS 
pseudorange RMS residuals on the L1 frequency are 
approximately twice larger than those on the L5 
frequency. Galileo exhibits the highest pseudorange 
observation precision among all four constellations. 
Its RMS residuals are less than 1.5 m on the E1 
frequency and 1 m on the E5a frequency. However, 
its signal reception capability is relatively poor, 
resulting in inadequate pseudorange observation data. 
As compared to the other constellations, the 
GLONASS pseudorange observations have the 
lowest precision with a RMS residuals of over 6 m, 
which is 3-4 times larger than the other constellations, 
probably attributing to its frequency division multiple 
access mode [10]. The Galileo pseudorange precision 
varies significantly from different satellite types, 
while it is not the case for the other constellations. 

In contrast to the pseudorange observation 
residuals, the carrier phase observation precision on 
the L5/E5a frequencies is approximately 3-4 mm 

lower than that of the L1/E1 frequencies. Meanwhile, 
the carrier observation precision varies little between 
different constellations as well as various satellite 
types with a RMS residuals value of about 5 mm. 

4.  Results of smartphone-based precise point 
positioning (PPP) 

PPP is a high-precision positioning technique 
without a need of any reference station, which is very 
suitable for smartphone-based GNSS positioning. 
Because most smartphones can only generate 
single-frequency GNSS data, the single-frequency 
(SF) method is widely applied. This section compares 
the dual-frequency-PPP (DF-PPP) and the SF-PPP 
performance. Undifferenced and uncombined PPP 
model is adopted due to a large number of 
single-frequency data [20]. In the DF-PPP scenario, 
all dual-frequency data and single-frequency data are 
used. The SF-PPP scenario uses only the 
first-frequency data. Global Ionospheric Map (GIM) 
products are treated as pseudo-observables to reduce 
the effect of ionospheric errors on the 
single-frequency observations [8]. Satellite phase 
center offsets (PCO) and phase center variations 
(PCV) from International GNSS Service (IGS) are 
corrected and smartphone PCO is corrected using the 
recommended value from the reference [21]. The 
cut-off elevation is set to 10°. A C/No-dependent 
observation weighting method [22] is applied instead 
of the elevation-angle-dependent weighting method.  

The experiment data is the same as in section 3.1. 
A known point is located near the smartphone at a 
distance of only a few centimeters. Thus, the 
coordinates of the known point can be used as 
references. The observation period is forced to reset 
the filter into 4 sessions with a session length of 2.5 
hours for the sake of statistical computation of the 
convergence time and positioning accuracy. The 
position filter is considered to be converged when the 
positioning errors reach ±1m and keep within ±1 m, 
and the positioning error is calculated using root 
mean square (RMS) after convergence. Figure 8 
shows the PPP errors in the east, north and up 
directions using the DF-PPP and SF-PPP models in 
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four sessions. The DF-PPP model can converge to 1 
m within 20 minutes in most sessions in the east and 
north directions, while the convergence time of the 
SF-PPP is about 2-3 times longer when compared to 
the DF-PPP. The convergence time of DF-PPP is 
improved about 68%, 69% and 53% when compared 
to the SF-PPP in east, north and up directions, 
respectively. Regarding the positioning accuracy, the 
DF-PPP RMS errors in all sessions reach 0.35 m, 

0.30 and 0.52 m in the east, north and up directions, 
which improves the positioning accuracy by 24%, 27% 
and 20% over the SF-PPP model, respectively. In 
conclusion, the convergence time and positioning 
accuracy can be effectively improved by adding the 
observations on the L5/E5a frequency. 

 

 
Figure 8 Positioning errors using DF-PPP and SF-PPP models in the east, north and up directions (‘S’ denotes ‘Session’) 

5.  Conclusions 

The GNSS observation data quality is a key 
factor to determine the smartphone positioning 
performance. This manuscript comprehensively 
analyzes the smartphone GNSS data quality 
characteristics on two frequencies and four 
constellations based on the first released 
dual-frequency Xiaomi Mi8 smartphone. The data 
quality is evaluated through a series of indices such 
as signal reception capability, multipath, 
carrier-to-noise ratio, cycle-slip ratio, and observation 
residuals. Finally, the smartphone-based PPP 
positioning results are also presented. 

The analysis results indicate that the GPS and 
BDS satellites have the best tracking performance 
with an average of up to 7 satellites per epoch, which 
is 3-4 more than the other constellations. The GNSS 
observation on the L1/E1 frequencies has a stronger 
signal reception ability than that on the L5/E5a 
frequencies. The GPS data integrity rate is 20%-25% 
higher than the other constellations, and the data 
integrity rate for the L5/E5a signal is obviously lower 

than the L1/E1 signal. In addtion, the C/No on the 
L1/E1 frequencies is stronger than that on the L5/E5a 
frequencies by over 3-4 dB-Hz. The C/No RMSs of 
four constellations on the L1/E1/G1/B1 frequencies 
differ slightly less than 2 dB-Hz. The GPS multipath 
effect is nearly two times larger than that of the 
Galileo on the L1/E1 frequencies, but they are almost 
equal on the L5/E5a frequencies.  

The results also indicate that the GLONASS has 
the highest cycle slip ratio among all four 
constellations, while the BDS has the lowest cycle 
slip ratio. Similarly, the GLONASS has the largest 
pseudorange observation RMS residuals at over 6 m, 
which is 3-4 times higher than those of the other 
constellations. For all constellations and frequencies, 
the carrier phase residual precision is at a few 
millimeters and varies slightly from constellations 
and frequencies. It should be noted that all 
conclusions are achieved based on the used Xiaomi 
Mi8 smartphone. More types of smartphone data 
quality evaluation will be made in the future.  

The positioning results demonstrate that the PPP 
convergence time can be improved by about 68%, 69% 
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and 53% in the east, north and up directions, and the 
positioning accuracy can be improved by about 24%, 
27% and 20% after adding the observations on the 
L5/E5a frequencies to the first-frequency GNSS 
observations, respectively. 
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Abstract：When users need to quickly process GNSS 
data, they often need the satellite orbit and clock 
products with the minimum latency and the highest 
precision, and it is a good solution to receive the 
real-time satellite RTCM SSR correction stream to 
recover the precise satellite orbit and clock products 
in real time and then store them in an offline 
repository for rapid response of precise positioning. 
In this paper, the real-time multi-GNSS orbit and 
clock RTCM SSR correction stream broadcast by 
SSRC00WHU0 mountpoint of Wuhan University is 
used to recover precise satellite orbit and clock 
products in real time. First, the seven-day orbit files 
and clock files were obtained and stored locally, and 
compared with the final MGEX precise satellite orbit 
and clock products. The results show that the 
real-time orbit and clock products of GPS and 
Galileo satellites have the best accuracy, followed by 
GLONASS satellites and BDS satellites. The 
real-time orbit products can reach the accuracy level 
of 5 cm for GPS satellites, 8 cm for Galileo satellites, 
15 cm for GLONASS satellites and 16 cm for BDS-3 
satellites, and the real-time clock products can reach 
the accuracy level of 0.43 ns for GPS satellites, 0.44 
ns for Galileo satellites, 0.91 ns for GLONASS 
satellites and 3.14 ns for BDS satellites. Then, the 
observation data of 20 IGS stations randomly 
distributed around the world from DOY 150 to 156 in 
2021 were processed by static precise point 
positioning (PPP) mode using the recovered real-time 
products. The results show that the average 

positioning accuracy can reach 1.57 cm, 0.76 cm and 
1.67 cm in east, north and up direction for static PPP, 
respectively. Finally, using the recovered real-time 
products and the final products, the GPS observation 
data collected in aviation were processed in pseudo 
real-time in a kinematic mode. The results show that 
the RMSs of positioning errors are 8.5 cm, 2.4 cm 
and 16.5 cm in the east, north and up direction, 
respectively. In addition, one-day multi-GNSS 
observation data at 20 IGS stations were processed in 
a kinematic PPP mode, and the results show that the 
average positioning accuracy is 3.11 cm, 2.04 cm and 
4.94 cm in east, north and up directions. 

Key words：IGS RTS；precise point positioning；
real-time positioning ； precise orbit and clock 
corrections；multi-GNSS 

1 Introduction 

Precise point positioning (PPP) uses precise 
satellite orbit and clock products as well the 
correction model or parameter estimation to eliminate 
the effects of various related errors, providing global 
users at an accuracy level of centimeter to millimeter 
[1][2]. As the precise satellite orbit and clock products 
provided by International GNSS Services (IGS) 
usually have some time delays, the production time 
of the final products can reach up to 13 days, so they 
are mainly used in the post-processing mode [3][4]. For 
real-time PPP (RT PPP) users or users who need to 
process GNSS data quickly, orbit and clock products 
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with lower latency are urgently needed. IGS rapid 
clocks have a latency of 16 hours and have a 
sampling rate of only 5 min, which can hardly satisfy 
the requirement of positioning precision. IGS 
ultra-rapid products can be obtained in real time, but 
the prediction accuracy of satellite clock is low at 
about 3 ns, and the prediction error increases with 
time, which cannot satisfy the precision requirements 
either[5]. Therefore, in this case, we urgently need the 
other orbit and clock products with the minimum 
latency and the highest precision. It is a good solution 
to save IGS real-time products in real time and store 
them in an offline repository. 

In order to meet the needs of real-time precise 
applications, IGS officially launched real-time 
service (RTS) in 2013[6][7]. The RTS products include 
Global Navigation Satellite System (GNSS) satellite 
orbit and satellite clock corrections, which 
correspond to broadcast ephemeris, broadcast in the 
form of RTCM (Radio Technical Commission for 
Maritime Services) state space representation (SSR) 
correction stream[8]. The RTS products broadcast 
over the Internet using Networked Transport of 
RTCM via Internet Protocol (NTRIP) and are 
available through several analysis centers around the 
world[5][6]. By receiving the GNSS satellite orbit and 
clock correction stream and recovering precise orbits 
and clock in real time with use of broadcast 
ephemeris, then saving them in an offline repository, 
users can obtain the highest precision satellite orbit 
and clock products with minimum latency, and then 
quickly or even real-time process GNSS data. Hadas 
et al. [3] examined the availability and latency of 
real-time correction. The results show that the 
availability of corrections was beyond 95% for GPS 
and beyond 90% for GLONASS. XU and YUAN 16] 
shows that the real-time orbit accuracy of most 
satellites can reach centimeter level and the real-time 
clock accuracy can reach sub-nanosecond level 
except BDS geostationary satellites. Chen et al.[17] 

shows that hourly static PPP using real-time products 
provides coordinates with precision of 2~3 cm in the 
north and 3~4 cm in the east and up components, for 
any location around the globe, and the precisions of 
2.2 cm, 4.2 cm and 6.1 cm are obtained in the north, 

east, and up directions for the kinematic PPP, 
respectively. Kazmierski et al.[9] made a 
comprehensive evaluation of real-time orbit and 
clock corrections. Elsobeiey and Al-Harbi[6] shows 
that using IGS RTS products in real-time PPP can 
improve the position solution root mean square (RMS) 
by about 50% compared with the solution obtained 
from the predicted part of the IGS ultra-rapid 
products. 

In this paper, the satellite orbit and clock SSR 
correction stream broadcast by IGS Analysis Center 
of Wuhan University is received in real time, and the 
precise satellite orbit and clock products are 
recovered in real time, and their integrity and 
accuracy are analyzed with reference to the final 
MGEX precise satellite orbit and clock products 
released by Wuhan University Analysis Center[10]. 
Using the open source software PRIDE PPP-AR Ⅱ 
developed by PRIDE Lab research group of Wuhan 
University[11][12], the observation data from globally 
distributed IGS stations are processed in static and 
kinematic PPP models and the aviation data are 
processed in pseudo real-time kinematic PPP model 
by using the recovered real-time satellite precise orbit 
and clock products and final products, respectively. 
The in real-time PPP accuracy is analyzed to evaluate 
the performance of the real-time recovered satellite 
orbit and clock products.  

2 Real-time precise satellite orbit and clock 
products based on SSR correction 

2.1 Recovery of precise orbits 

The satellite orbit and clock corrections in 
RTCM-SSR format can be expressed as follows[8]: 

∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡0)
= (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝛿𝛿𝑃𝑃𝑟𝑟 , 𝛿𝛿𝑃𝑃𝑎𝑎,𝛿𝛿𝑃𝑃𝑐𝑐 , 𝛿𝛿𝑃𝑃�̇�𝑟 , 𝛿𝛿𝑃𝑃�̇�𝑎,𝛿𝛿𝑃𝑃�̇�𝑐 ,𝐶𝐶0,𝐶𝐶1,𝐶𝐶2) (1) 

where 𝑡𝑡0  is the Issue of Data (IOD); 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
represents the corresponding broadcast ephemeris 
used for the calculation of the current orbit and clock 
corrections; (𝛿𝛿𝑃𝑃𝑟𝑟 , 𝛿𝛿𝑃𝑃𝑎𝑎, 𝛿𝛿𝑃𝑃𝑐𝑐) are the orbital correction 
components in radial, along-track, and cross-track 
directions; (𝛿𝛿𝑃𝑃�̇�𝑟 , 𝛿𝛿𝑃𝑃�̇�𝑎, 𝛿𝛿𝑃𝑃𝑐𝑐)̇  are the correction rates in 
radial, along-track, and cross-track directions; 
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(𝐶𝐶0,𝐶𝐶1,𝐶𝐶2) are the polynomial coefficient terms of 
the real-time satellite clock corrections. 

The above satellite orbit corrections are defined 
in the RAC (radial, along-track, and cross-track) 
orbital coordinate system. However, the broadcast 
ephemeris uses the Earth-Centered-Earth Fixed 
(ECEF) coordinate system. Therefore, the real-time 
orbit corrections must be converted from the RAC 
coordinate system to the ECEF coordinate system 
before it can be applied to the broadcast ephemeris, 
and then precise satellite coordinates can be 
obtained[3][6]. 

For any epoch 𝑡𝑡, the orbit correction 𝛿𝛿𝑃𝑃 in RAC 
orbital coordinate system at epoch 𝑡𝑡 can be derived 
by[5]: 

𝛿𝛿𝑃𝑃 = �
𝛿𝛿𝑟𝑟
𝛿𝛿𝑎𝑎
𝛿𝛿𝑐𝑐
� = �

𝛿𝛿𝑃𝑃𝑟𝑟
𝛿𝛿𝑃𝑃𝑎𝑎
𝛿𝛿𝑃𝑃𝑐𝑐

� + �
𝛿𝛿𝑃𝑃�̇�𝑟
𝛿𝛿𝑃𝑃�̇�𝑎
𝛿𝛿𝑃𝑃�̇�𝑐

� (𝑡𝑡 − 𝑡𝑡0) (2) 

where 𝛿𝛿𝑟𝑟 ,  𝛿𝛿𝑎𝑎 , and 𝛿𝛿𝑐𝑐  are the orbital correction 
components in radial, along-track, and cross-track 
directions. 

Then, compute the transformation matrix 𝑅𝑅 from 
RAC to ECEF, and the corresponding ECEF orbit 
corrections is derived by[5]: 

𝑅𝑅 = [𝑒𝑒𝑟𝑟 , 𝑒𝑒𝑎𝑎, 𝑒𝑒𝑐𝑐] = �
𝑣𝑣

|𝑣𝑣|

×
𝑟𝑟 × 𝑣𝑣

|𝑟𝑟 × 𝑣𝑣| ,
𝑣𝑣

|𝑣𝑣| ,
𝑟𝑟 × 𝑣𝑣

|𝑟𝑟 × 𝑣𝑣|� 
(3) 

�
𝛿𝛿𝑥𝑥
𝛿𝛿𝑦𝑦
𝛿𝛿𝑧𝑧
� = 𝑅𝑅 �

𝛿𝛿𝑟𝑟
𝛿𝛿𝑎𝑎
𝛿𝛿𝑐𝑐
� (4) 

where 𝑟𝑟 ,  𝑣𝑣  are the satellite position vector and 
velocity vector computed from the broadcast 
ephemeris; 𝛿𝛿𝑥𝑥 ,  𝛿𝛿𝑦𝑦 , and 𝛿𝛿𝑧𝑧  are the correction 
components in X, Y, and Z directions in ECEF 
coordinate system. 

Finally, by applying real-time ECEF orbit 
corrections to broadcast satellite coordinates, the 
precise satellite orbit coordinates are calculated[5]: 

�
𝑋𝑋
𝑌𝑌
𝑍𝑍
�
𝑝𝑝𝑟𝑟𝑝𝑝𝑐𝑐

= �
𝑋𝑋
𝑌𝑌
𝑍𝑍
�
𝑏𝑏𝑟𝑟𝑏𝑏𝑐𝑐

− �
𝛿𝛿𝑥𝑥
𝛿𝛿𝑦𝑦
𝛿𝛿𝑧𝑧
� (5) 

where (𝑋𝑋,𝑌𝑌,𝑍𝑍)𝑝𝑝𝑟𝑟𝑝𝑝𝑐𝑐  are the precise satellite 
coordinates in the ECEF coordinate system and 
(𝑋𝑋,𝑌𝑌,𝑍𝑍)𝑏𝑏𝑟𝑟𝑏𝑏𝑐𝑐 are the broadcast satellite coordinates. 

It should be noted that there are generally two 
reference points for satellite position corrections 
provided in satellite orbit SSR correction stream, the 
satellite antenna phase center (APC), and the satellite 
Center of Mass (CoM). If the reference point is the 
antenna phase center, the satellite antenna phase 
deviation correction is needed to obtain the satellite 
centroid coordinates in the ECEF coordinate system. 
Typically, the reference of the SSR correction stream 
is indicated in the corresponding information 
description of the mountpoint that receives the SSR 
correction stream. 

2.2 Recovery of precise clock 

At epoch 𝑡𝑡 , precise satellite clock can be 
calculated by applying satellite clock corrections to 
broadcast satellite clock[8]: 

𝛿𝛿𝐶𝐶 = 𝐶𝐶0 + 𝐶𝐶1(𝑡𝑡 − 𝑡𝑡0) + 𝐶𝐶2(𝑡𝑡 − 𝑡𝑡0)2

𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑐𝑐 = 𝑑𝑑𝑡𝑡𝑏𝑏𝑟𝑟𝑏𝑏𝑐𝑐 −
𝛿𝛿𝐶𝐶
𝑐𝑐

� 
(6) 

where 𝐶𝐶0,𝐶𝐶1, and 𝐶𝐶2 are the polynomial coefficient 
terms of the real-time satellite clock corrections; 𝑐𝑐 is 
the speed of light in meters per second in the vacuum; 
𝑑𝑑𝑡𝑡𝑏𝑏𝑟𝑟𝑏𝑏𝑐𝑐 is the satellite clock computed according to 
the broadcast ephemeris; 𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑐𝑐  is the precise 
satellite clock. 

3 Quality analysis of real time products 

In this study, the SSRC00WHU0 mountpoint of 
Wuhan University is selected, and the BNC 
software[13] is used to receive the satellite orbit and 
clock SSR correction stream in real time. The 
correction stream provides correction information for 
GPS, GLONASS, Galileo, BDS and takes CoM as 
the reference point. The SSR correction stream of 7 
days from May 30 to June 5, 2021 is collected in real 
time. Combined with the broadcast ephemeris, the 
corresponding precise satellite orbits and clock are 
recovered and recorded in real time in files in SP3 
and CLK format (the interval of both products is 5 s), 
and these files are stored locally, so as to facilitate the 
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follow-up analysis of the integrity of the real-time 
correction stream and the accuracy of the recovered 
precise satellite orbit and clock products. 

In this section, the final MGEX products released 
by Wuhan University Analysis Center is taken as a 
reference, and the quality of the recovered real-time 
products is analyzed in terms of integrity, orbit 
accuracy and clock accuracy. 

3.1 Integrity 

In practical work, the real-time correction stream 
will be affected by the stability of the data source 
itself, the transmission network and the receiving 
software. Therefore, data of some epochs in the 
recovered real-time products will be missed. Taking 
each satellite as a unit, we statistically analyze the 
integrity of the recovered real-time products for 7 
consecutive days from May 30 to June 5, 2021. The 
integrity rate of a satellite is defined as: 

𝛼𝛼 =
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑝𝑝

𝑚𝑚𝑡𝑡ℎ𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝𝑡𝑡𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎
 (7) 

where 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑝𝑝 is the total number of epochs of 
the satellite's data actually contained in the product; 
𝑚𝑚𝑡𝑡ℎ𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝𝑡𝑡𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎  is the total number of epochs of the 
satellite's data theoretically contained in the product. 
For example, if the interval of the correction stream 
is 5 s, then the 𝑚𝑚𝑡𝑡ℎ𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝𝑡𝑡𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 for one day should be 
86400 5⁄ = 17280 epochs. 

Table 1 shows the data integrity rate of real-time 
products. As can be seen from Table 1, the satellite 
data during the experimental period are relatively 
complete, and the real-time products record the orbit 
and clock information of 113 
GPS/GLONASS/Galileo/BDS satellites. It should be 
noted that the recovered real-time precise satellite 
products do not include all satellites of all systems, 
because there is no corresponding information of 
those satellites in Table 1 in the real-time SSR 
correction stream during the test. 

Among the satellites in Table 1, the integrity rate 
of 111 satellites (98% of the total) is more than 70%; 
the integrity rate of the remaining two satellites (R09 

and R15) is very low, which is 13.10% and 19.40%, 
respectively, mainly because the analysis center 
broadcasts only a small amount of real-time SSR 
correction information for these two satellites during 
the experimental period. The integrity rate of 100 
satellites (88% of the total) is more than 80%. The 
integrity rate of 69 satellites (61% of the total) is 
more than 90%, with a maximum of 96.77%. From 
the point of view of different systems, the average 
integrity rate of GPS satellites is 94.27%. By contrast, 
the average integrity rate of GLONASS satellites is 
only 81.64%, which is mainly caused by the 
particular impact of R15 and R09 satellites during the 
period. The average integrity rate of Galileo satellites 
is 92.97%. The average integrity rate of BDS satellite 
is 85.38%. For BDS satellites, it is worth noting that 
there are obvious differences between BDS-2 and 
BDS-3 satellites. The average integrity rate of the 
BDS-2 satellites is 91.44%. By contrast, the average 
integrity rate of the BDS-3 satellites is only 82.01%. 
The average integrity rate of the BDS-3 satellites is 
about 10% lower than that of the BDS-2. Generally 
speaking, the integrity of the GPS and Galileo 
satellites is the best, followed by the BDS satellites, 
and the integrity of the GLONASS satellites is the 
worst. 

3.2 Accuracy of real-time precise orbits 

Taking the final MGEX precise orbit products 
released by Wuhan University Analysis Center as a 
reference, the accuracy of the real-time orbit products 
in SP3 format on 7 consecutive days is analyzed and 
evaluated. Since the data interval of the final orbit 
products is 15 minutes whereas the data interval of 
the real-time orbit products is 5s, in order to avoid 
additional errors caused by data interpolation, only 
the data at the same epoch for the final products and 
the real-time products are compared, and the RMS 
(root mean square) values of the orbit differences in 
along-track, cross-track and radial directions for each 
satellite during the experimental period are calculated 
according to formula (8), so as to represent the 
accuracy of real-time satellite orbit products[5]: 

Table 1 Satellite data integrity rate of real-time products 
PRN Integrity PRN Integrity PRN Integrity PRN Integrity PRN Integrity 
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rate % rate % rate % rate % rate % 

G01 93.89 G27 94.06 E01 93.38 C05 93.31 C34 83.26 

G02 94.68 G28 94.77 E02 93.01 C06 92.39 C35 78.78 

G03 95.53 G29 96.77 E03 93.65 C07 92.47 C36 84.06 

G04 96.10 G30 94.60 E04 93.12 C08 95.70 C37 82.71 

G05 95.81 G31 95.74 E05 94.77 C09 95.92 C38 76.38 

G06 92.89 G32 93.85 E07 93.85 C10 90.92 C39 80.71 

G07 92.86 R01 89.95 E08 94.64 C11 90.23 C40 78.72 

G08 94.20 R02 89.90 E09 92.03 C12 85.32 C41 74.61 

G09 95.23 R03 89.26 E11 90.09 C13 93.39 C42 71.87 

G10 95.35 R04 90.43 E12 91.25 C14 91.92 C43 73.54 

G12 89.49 R05 90.61 E13 95.05 C16 93.51 C44 71.71 

G13 94.58 R07 89.53 E15 92.63 C19 84.50 C45 70.08 

G14 94.39 R08 89.17 E19 91.90 C20 85.36 C46 73.79 

G15 95.86 R09 13.10 E21 94.56 C21 87.18   

G16 95.86 R12 88.50 E24 91.32 C22 85.13   

G17 95.31 R13 87.50 E25 92.84 C23 88.27   

G18 95.44 R14 90.07 E26 93.85 C24 88.35   

G19 96.11 R15 19.40 E27 93.84 C25 87.91   

G20 95.63 R16 90.54 E30 93.21 C26 87.73   

G21 93.31 R17 89.61 E31 91.62 C27 89.13   

G22 79.34 R18 89.62 E33 91.79 C28 90.95   

G23 95.01 R19 90.25 C01 96.65 C29 87.07   

G24 94.24 R20 84.42 C02 89.66 C30 85.59   

G25 95.59 R21 88.86 C03 74.62 C32 81.94   

G26 95.79 R24 90.50 C04 95.59 C33 84.83   

 

𝑅𝑅𝑅𝑅𝑅𝑅 = �(�∆𝑎𝑎2
𝑛𝑛

𝑎𝑎=1

) 𝑛𝑛�  (8) 

where ∆𝑎𝑎 is the orbit difference of the epoch 𝑖𝑖; 
𝑛𝑛 is the number of all epochs. 

Figures 1 ~ 3 show the RMS differences of 
along-track, cross-track and radial directions for the 
GPS, GLOANSS and Galileo satellite orbits between 
the real-time products and the final products within 7 
days. As can be seen from figure 1, the accuracy of 
the GPS real-time orbit is mostly lower than 5 cm in 
three directions, however, the accuracy of G14 
satellite is slightly larger with an along-track error of 
8.20 cm. At the same time, it can also be found that 

the along-track accuracy of the GPS real-time orbit is 
slightly worse than the cross-track and radial 
accuracies. As can be seen from figure 2, except for 
R09 and R20 satellites, the orbit accuracy of most 
GLONASS satellites in real-time products is lower 
than 15 cm in three directions, and the cross-track 
orbital accuracy of most GLONASS satellites is the 
highest in the three directions. It can be seen from 
figure 3 that, similar to GPS, the real-time orbit of 
Galileo has the characteristics that the accuracy is the 
best in the radial direction, and the worst in the 
along-track direction. The real-time orbit accuracy of 
most Galileo satellites is within 8 cm in the 
along-track direction, within 6 cm in the cross-track 
direction, and within 4 cm in the radial direction. 
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Fig.1 Along-track (A), Cross-track (C) and Radial (R) accuracy of GPS satellite orbit of real-time products 
 

 
Fig.2 Along-track (A), Cross-track (C) and Radial (R) accuracy of GLONASS satellite orbit of real-time 

products 

 
Fig.3 Along-track (A), Cross-track (C) and Radial (R) accuracy of Galileo satellite orbit of real-time products 

Figures 4 and 5 show the RMS differences of 
along-track, cross-track and radial directions for the 
BDS Geostationary Earth Orbit (GEO) and BDS 
inclined geosynchronous orbits (IGSO) / medium 
Earth orbit (MEO) satellite orbits between the 
real-time products and the final products within 7 
days, respectively. It should be noted that in figure 5, 
the IGSO/MEO satellites are divided into two parts 
for display according to the attributes of BDS-2 and 

BDS-3. At the same time, the GEO satellites in figure 
4 are all BDS-2 satellites, so it is convenient to find 
the difference between BDS-2 and BDS-3 satellites. 
As can be seen from figures 4 and 5, during the 
experimental period, the real-time orbit accuracy of 
the BDS GEO satellite is generally low, which is the 
worst among all systems. Generally, it has 
meter-level accuracy in the cross-track and radial 
directions, and even up to more than ten meters in the 
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along-track direction. The real-time orbit accuracy of 
the BDS IGSO/MEO satellites is significantly 
improved compared with the GEO satellites, most 
IGSO/MEO satellites can reach an accuracy level 

within 20 cm, which is similar to that of GLONASS 
satellites, but the along-track accuracy of some 
satellites is poor, exceeding 30 cm.  

 
Fig.4 Along-track (A), Cross-track (C) and Radial (R) accuracy of BDS GEO satellite orbit of real-time 

products 

 
Fig.5 Along-track (A), Cross-track (C) and Radial (R) orbital accuracy of BDS IGSO/MEO satellites for 

real-time products. (It is divided into two parts: a BDS-2, b BDS-3) 

The real-time orbit accuracy of BDS-3 satellites is 
much higher than that of BDS-2 satellites. The 
average orbital accuracy of all BDS-2 satellites in the 
along-track, cross-track and radial directions is 
383.22 cm, 124.63 cm and 38.46 cm, which is mainly 

caused by the poor accuracy of GEO satellites. The 
average accuracy of all BDS-3 satellites in the 
along-track, cross-track and radial directions is 13.01 
cm, 6.52 cm and 6.39 cm, which is 97%, 95% and 83% 
higher than those of BDS-2 satellites in the 
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along-track, cross-track and radial directions, 
respectively. Even if the BDS-2 GEO satellites are 
not considered in the accuracy statistics, the average 
RMS values of the remaining BDS-2 satellites in the 
along-track, cross-track and radial directions are 
23.61 cm, 11.12 cm and 12.38 cm, which are 1.8, 1.7, 
1.9 times larger than those of the BDS-3 satellites, 
respectively. In fact, the real-time orbit accuracy of 
the BDS-2 satellite is still worse than that of the 
BDS-3 satellites. Overall, the real-time BDS orbit 
accuracy still has a great room for improvement. 

Table 2 shows the average RMS differences 
between the real-time orbits and the final orbits of 
satellites of different systems during the experimental 
period. It can be seen from Table 2 that the real-time 
orbit accuracy of GPS satellites is the highest among 
all systems, and its average accuracy in the 
along-track, cross-track and radial directions is 4.10 
cm, 2.89 cm and 1.46 cm, respectively. The average 
accuracy of Galileo satellites in the along-track, 
cross-track and radial directions is 7.49 cm, 4.75 cm 
and 2.21 cm, respectively, which is only slightly 
worse than that of GPS satellites. It has the 
second-best orbit accuracy among all systems. Both 
GPS and Galileo satellites have the best real-time 
orbit accuracy in the radial direction, and the worst in 
the along-track direction. Next are the BDS 
IGSO/MEO and GLONASS satellites, whose 
real-time orbit accuracy is equivalent in the 
along-track and cross-track directions. In the radial 
direction, the BDS IGSO/MEO satellites perform 
better than the GLONASS satellites. Finally, the 
average accuracy of the BDS GEO satellites in the 
along-track, cross-track and radial directions is 
1102.42 cm, 351.65 cm and 90.62 cm, respectively, 
which is the worst. 

3.3 Accuracy of real-time precise clocks 

Similarly, the real-time clock products in CLK 
format for 7 consecutive days is compared with the 
final MGEX precise clock products released by 
Wuhan University Analysis Center to analyze its 
accuracy. Because the clock products generated by 
different analysis centers use different reference 
clocks, there is a systematic deviation between the 

clock products. In this paper, the quadratic difference 
method is used to calculate the accuracy of the 
real-time precise clock. Firstly, one of the satellites of 
each system is selected as a reference satellite (in this  

Table 2 Average orbit accuracy of satellites for 
different systems in real-time products 

Satellite 

system 

Average accuracy in different 

directions (cm) 

Along-track Cross-track Radial 

GPS 4.10 2.89 1.46 

Galileo 7.49 4.75 2.21 

BDS 

IGSO/MEO 
15.88 7.76 8.00 

GLONASS 13.43 7.90 13.86 

BDS GEO 1102.42 351.65 90.62 

paper, G01, R01, E01 and C01 are selected, 
respectively). Then, the other satellites make a 
difference with the reference satellite clock at the 
same epoch of the real-time clock product and the 
final clock product, thus eliminating the impact of 
different reference clocks. Then make a second-order 
difference between the first-order difference results 
of the real-time product and the final product. Finally, 
the formula (9) is used to calculate the RMS value of 
the quadratic difference to represent the accuracy of 
the real-time clock products[5]: 

𝑅𝑅𝑅𝑅𝑅𝑅 = ��(∆𝑎𝑎 − ∆�
𝑛𝑛

𝑎𝑎=1

)2 𝑛𝑛�  (9) 

where ∆𝑎𝑎 is the quadratic difference of the epoch 𝑖𝑖 
of each satellite; ∆�  is the mean value of the 
quadratic difference sequence of each satellite clock; 
𝑛𝑛 is the number of epochs. 

Figure 6 shows the RMS values calculated 
according to formula (9) for GPS, GLOANSS, 
Galileo and BDS real-time precise satellite clock over 
a 7-day period. It can be seen from figure 6 (a) that 
there are obvious differences in real-time clock 
accuracy among different GPS satellites. Most GPS 
satellites can achieve an accuracy level better than 
0.6 ns, and the best accuracy is 0.15 ns (G19), but the 
accuracy of G08/G09/G10/G25/G27/G28 satellites is 
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obviously poor, and the worst accuracy is only 0.90 
ns (G08). Overall, the average real-time clock 
accuracy of all GPS satellites is 0.43 ns, which is the 
highest among all satellites of all constellations. As 
can be seen from figure 6 (b), the real-time clock 
accuracy of each satellite of GLONASS system is 
very close. The real-time clock accuracy of 
GLONASS satellites basically fluctuates between 
0.8~1.0 ns. The best accuracy is 0.59 ns (R15), and 
the worst is only 1.14 ns (R20). The average 
real-time clock accuracy of all GLONASS satellites 
is 0.91 ns. As can be seen from figure 6 (c), the 
real-time clock accuracy of Galileo satellites is 
relatively higher. Except for the poor accuracy of E04 
and E11 satellites, which are 0.89 and 0.83 ns, 
respectively, the other satellites can achieve an 
accuracy level of better than 0.6 ns. The average 
accuracy of all Galileo satellites is 0.44 ns, which is 

similar to GPS satellites. It can be seen from Figure 6 
(d) that the real-time clock accuracy of the BDS 
satellites is relatively poor compared with the other 
systems. For about 54% of the BDS satellites, their 
clock accuracy is more than 3 ns. The worst accuracy 
is 6.76 ns (C30), and the best accuracy is only 1.25 ns 
(C09), which is relatively poor compared with the 
other systems. The average real-time clock accuracy 
of BDS is only 3.45 ns, which is much worse than 
that of the other constellation satellites. Unlike the 
orbit, there is no significant difference in the clock 
accuracy between the BDS GEO and IGSO/MEO 
satellites, and between the BDS-2 and BDS-3 
satellites, which may be due to the quadratic 
difference method that eliminates the systematic 
deviation. 

 
 

 
Fig.6 Accuracy of satellite clocks of real-time products for (a) GPS, (b) GLONASS, (c) Galileo, (d) 

BDS. (Due to the poor accuracy of BDS satellites, the scale of y-axis in d subplot is different 
from that in a, b and c subplots) 

On the whole, during the experimental period, 
the real-time clock accuracy of GPS and Galileo 
satellites is relatively higher, followed by GLONASS 

satellites. Taking the final products as a reference, 
their accuracy can reach the sub-nanometer level, 
which is much higher than that of the IGS ultra-rapid 
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products. It should be noted that the BDS satellites 
only have the accuracy of a few nanoseconds, and its 
real-time clock accuracy is the worst. 

4 The application of real-time products in RTPPP  

The real time precise satellite orbit and clock 
products are mainly used in real-time PPP (RTPPP), 
to achieve rapid response to GNSS data processing. 
Therefore, this section indirectly verifies the quality 
and application effect of the real-time products 
through static and pseudo-real-time kinematic PPP. 

The open source PPP GNSS data processing software 
PRIDE PPP-AR Ⅱ  developed by Prof. Jianghui 
Geng (Songfeng Yang, etc.) of GNSS Research 
Center of Wuhan University is used in the test[18]. The 
software can support GPS, GLONASS, Galileo, 
BDS-2/3 and QZSS processing, handle 
high-frequency data up to 50Hz in a variety of 
processing modes. The software can be applied to 
large dynamic mobile platforms, and has good 
positioning and application performance. 

 

Table 3 Test setup and data processing strategies 
Items Models/Strategies 

Processing mode Static; 

Kinematic; 

Constellations GPS/GLONASS/Galileo/BDS; 

Observations Ionospheric-free linear combination code and carrier-phase measurements; 

Priori noise Pseudorange: 0.3 m; 

Carrier-phase: 0.01 cycles; 

Elevation cutoff angle 7° 

Data interval Static: 30 s; 

Kinematic: 0.5 s, 30 s; 

Precise satellite orbits 

and clocks 

Real-time products derived from real-time stream: SSRC00WHU0 (CoM) + broadcast ephemeris; 

Final MGEX products released by Wuhan University Analysis Center; 

Code biases Using CODE’s DCB products to correct the satellite-end P1C1 and P2C2 differential code biases (DCB) 

Receiver antenna phase 

center 

PCO and PCV values from igs14.atx file 

Tidal displacements Corrected by IERS Convention 2010 

Relativistic effect Corrected 

Phase windup Corrected 

Station coordinates Static: Estimated as a constant value for one day; 

Kinematic: Estimated as white noise; 

Receiver clocks Estimated as white noise, one value for each GNSS system 

Zenith tropospheric 

delay 

Mapping function: Global Mapping Function (GMF)[14] 

Saastamonien model[15] + Estimated as piece-wise constant 

Horizontal troposphere 

gradients 

Estimated as piece-wise constant 

Ionosphere delays First-order ionosphere delay is eliminated using the ionosphere-free combination; Higher-order 

ionosphere delay is corrected using the CODE global ionosphere maps 

Phase ambiguities Float constants for each continuous arc 
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Fig.7 IGS stations used for static test 

4.1 Static test 

As shown in figure 7, 20 globally distributed IGS stations are randomly selected to conduct static PPP 
processing using the daily observation data from May 30th to June 5th (DOY 150~156) in 2021. The specific 
processing strategies in the test are shown in the static mode section in Table 3. At the same time, as a reference, 
keeping all other processing strategies unchanged, this section also uses the final MGEX orbit and clock products 
released by Wuhan University Analysis Center to process the same observation data in the static PPP mode. 

In this study, the weekly combination coordinates provided by IGS are used as reference coordinates, the 
difference between the daily solution of static PPP at each station and the corresponding reference coordinate is 
calculated, and is converted to the ENU (east, north, and up) coordinate directions to get the positioning error 
which is used to evaluate the positioning accuracy. Figures 8 and 9 show the RMS of the positioning errors using 
the final products and the real-time products during the 7 days of the test, respectively. It can be seen from Figure 
8 that for the static PPP using the final products, the daily float solution of most stations can achieve the accuracy 
of better than 6.0 mm in the east and north directions and better than 1.0 cm in the up direction. The positioning 
accuracy at CMUM station in the up direction is slightly worse than that of other stations, which is 1.02 cm. In 
general, the positioning accuracies in the east and north directions are comparable, and better than that in the up 
direction. As can be seen from Figure 9, for the static PPP using real-time products, the positioning accuracy of 
the corresponding daily float solution is slightly worse than that of the final products, but most stations can 
achieve the accuracy of better than 2.0 cm in the east and north direction and better than 3.0 cm in the up direction. 
The positioning accuracy in the east direction of YKRO and ZAMB station is slightly worse than other stations. 

Table 4 shows the specific RMS of the positioning errors in the direction of east, north and up at each station. 
It can be seen from Table 4 that using the final products for static PPP processing, the results are in good 
agreement with the IGS weekly combination solution. The optimal positioning accuracy can reach 1.0 mm in east 
direction, 0.7 mm in north direction and 2.2 mm in up direction. The average positioning accuracy in east, north 
and up directions is 0.26 cm, 0.29 cm, 0.53 cm, respectively. In contrast, the positioning accuracy of the results 
using real-time products is slightly lower. The optimal positioning accuracy in east, north and up directions is 6.6 
mm, 3.0 mm and 6.2 mm, respectively, and the average positioning accuracy in east, north and up directions is 
1.57 cm, 0.76 cm, 1.67 cm, respectively. Overall, the positioning accuracy at each station is comparable, the 
positioning accuracy in north direction is the best, and the worst in up direction. 
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Fig.8 The RMS of the positioning errors using the final products in static PPP test 

 
Fig.9 The RMS of the positioning errors using the real-time products in static PPP test 

4.2 Kinematic test 
In the kinematic test, firstly, this study indirectly 

verifies the application effect of real-time products by 
pseudo real-time kinematic PPP processing using 
GPS observation data collected in aviation. In this 
test, the aircraft mainly flew in the northeast of 
Hainan Province in China. The flight trajectory is 
shown by the red solid line in Fig. 10, in which the 
red triangle represents the reference station. The test 
was carried out on May 29, 2021. The observation 

time is about 3.5 hours and the data sampling rate is 
0.5 seconds. The specific processing strategy in the 
test is shown in the kinematic mode section in Table 
3. The processing mode of PRIDE PPP-AR Ⅱ 
software is set to kinematic mode, and the final 
products released by Wuhan University Analysis 
Center and real-time products are used to process the 
GPS observation data respectively while the other 
settings are kept the same, and the corresponding 
kinematic positioning results are obtained. 
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Table 4 Comparison of positioning accuracy between using final products and real-time products 

Station 
Final MGEX products RMS (cm)  Real-time products RMS (cm) 

East North Up  East North Up 
BOAV 0.30 0.34 0.67  0.86 0.61 2.31 
CKIS 0.20 0.48 0.63  0.67 0.56 0.97 
CMUM 0.61 0.35 1.02  1.17 0.49 3.00 
GCGO 0.10 0.07 0.49  1.58 0.32 0.80 
IISC 0.18 0.31 0.58  2.45 0.48 2.05 
KIRU 0.13 0.11 0.64  0.66 0.60 1.29 
KITG 0.18 0.35 0.63  2.21 0.64 1.14 
MATG 0.27 0.15 0.45  1.13 0.53 1.16 
MKEA 0.15 0.34 0.56  2.75 1.00 2.56 
PNGM 0.23 0.33 0.53  1.07 0.62 1.17 
QAQ1 0.15 0.16 0.22  1.07 0.53 0.97 
RIGA 0.34 0.19 0.59  1.40 0.92 1.80 
SGPO 0.22 0.29 0.45  0.80 0.30 1.11 
TOW2 0.32 0.36 0.35  1.26 0.53 2.23 
TWTF 0.50 0.40 0.93  1.04 0.57 1.94 
UCLU 0.27 0.45 0.31  1.01 0.51 2.35 
ULAB 0.38 0.26 0.42  1.74 1.10 3.02 
UNSA 0.28 0.46 0.39  0.80 1.05 1.50 
YKRO 0.21 0.30 0.45  3.13 2.24 0.62 
ZAMB 0.20 0.19 0.25  4.61 1.58 1.30 
Average 0.26 0.29 0.53  1.57 0.76 1.67 
 

 
Fig.10 The flight trajectory of the aircraft in the 

kinematic test 

In order to evaluate the positioning accuracy of 
the kinematic positioning results, this study uses the 
RTKLIB software to process the experimental data 

using kinematic relative positioning mode, and the 
integer ambiguity resolution is set to "fix and hold" to 
obtain the fixed solution (the reference station is 
located near Qionghai City, Hainan, and the 
maximum baseline length is up to 100 km). Taking 
the relative positioning results output by RTKLIB as 
the reference results (with the increase of baseline 
length, the positioning accuracy of reference results 
may decrease), the positioning error is obtained by 
calculating the difference between the kinematic PPP 
float positioning results of the final/real-time 
products and the reference results in ENU coordinate 
system. 

Fig. 11 shows the time series of the position 
difference between the kinematic PPP float 
positioning result and the reference result in the 
directions of east, north and up. The blue curve 
represents the position errors using the final products, 
and the orange curve represents the position errors 
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using the real-time products. It can be seen from 
Figure 11 that the two time series are very consistent 
with each other. The RMS of the position errors 
between the kinematic PPP positioning results based 
on the final products and the reference results are 
8.08 cm, 2.09 cm and 17.86 cm, respectively, in the 
east, north and up directions. The RMS of the 
position errors between the kinematic PPP 
positioning results based on the real-time products 
and the reference results are 8.53 cm, 2.41 cm and 
16.47 cm, respectively, in the east, north and up 
directions. Only the GPS observation data were 
processed in this aviation test. Through the research 
and analysis of the quality of the real-time products 
in the previous sections, compared with the final 
products, the average accuracy of the real-time GPS 
orbits is better than 5 cm, and the average accuracy of 
the real-time GPS clock is 0.43 ns. It can be 
considered that the real-time GPS products is actually 
very close to the final products, so the “Rt” 
positioning result is also very close to “Fin”. This 
indirectly proves that the real-time GPS precise 
satellite orbit and clock products recovered by SSR 
correction stream have relatively high accuracy, and 
it can also achieve the similar positioning accuracy as 
the final products when it is used by users. The above 
results also fully demonstrate the advantages and 
potential of the solution of real-time recovery of 
precise satellite orbit and clock products and storing 
them in an offline repository, that is, users can use 
these products to process GNSS data with minimum 
latency or even real-time without waiting for the 
release of the IGS final products. At the same time, 
they can also obtain the positioning results with an 
optimal accuracy of the centimeter level. 

In addition, because only GPS data are collected 
in the above aviation test, in order to fully verify the 
quality of GPS, GLONASS, Galileo and BDS 
satellites in real-time products, this study uses 20 IGS 
stations as shown in the Section 4.1 and uses PRIDE 
PPP-AR II software to process the GPS, GLONASS, 
Galileo and BDS observation data of all stations on 
DOY 154, 2021 using kinematic PPP mode. Similarly, 
as a comparison, the final MGEX products of Wuhan 

University and real-time products were used in the 
test. Figure 12 selects the TWTF station and shows 
the difference of the time series in the east, north and 
up directions between the results obtained by using 
the final products and real-time products and the 
reference coordinates. As can be seen from Figure 12, 
the positioning accuracy of using the real-time 
products is slightly worse than that of using the final 
products, and the RMS values of the kinematic 
solution differences in the east, north and up 
directions are 1.67 cm, 1.66 cm and 3.94 cm, 
respectively, which are slightly higher than the 
corresponding RMS values of the final products. 
Table 5 shows the RMS values of the sequence of 
differences between the kinematic solutions and the 
reference coordinates obtained by using the final 
products and real-time products of all stations in the 
east, north and up directions. It can be seen from 
Table 5 that the kinematic solutions obtained by using 
the final products have very high positioning 
accuracy, and the corresponding RMS values of the 
kinematic solution in east, north and up directions of 
each station are smaller than those of the kinematic 
solutions obtained by using the real-time products. 
The average positioning accuracy of the kinematic 
solutions of all stations obtained by using final 
products in east, north and up directions is 0.88 
cm,0.89 cm and 2.23 cm, respectively. The kinematic 
solutions obtained by using the real-time products 
generally have the accuracy levels of centimeters in 
horizontal directions and centimeters to decimeters in 
vertical direction. The average positioning accuracy 
of kinematic solutions obtained by using real-time 
products in east, north and up directions is 3.11 cm, 
2.04 cm and 4.94 cm, respectively. Although this 
level of positioning accuracy is slightly lower than 
that of the final products, it can still meet the 
requirements of positioning accuracy in near 
real-time applications that require rapid PPP 
processing (usually within a few hours). 
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Fig.11 Position difference between the kinematic PPP float positioning results and the reference result 

 

 
Fig.12 Kinematic PPP results of TWTF station processed by using final products and real-time products 

on DOY154, 2021 
 
 
 
 

 
 
 
 

Table 5 Comparison of positioning accuracy of kinematic PPP between using final products and 
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real-time products 

Station 
RMS of Fin (cm)  RMS of Rt (cm) 

East North Up  East North Up 
BOAV 1.32 1.32 2.70  2.42 1.77 4.36 
CKIS 0.82 0.74 1.57  1.77 1.44 4.79 
CMUM 2.71 2.35 7.63  5.97 4.14 10.35 
GCGO 0.82 0.70 1.99  2.90 2.06 4.42 
IISC 1.43 0.96 3.61  4.52 1.78 5.22 
KIRU 0.48 0.46 1.48  2.75 2.56 3.87 
KITG 0.67 0.82 1.55  4.45 1.64 5.12 
MATG 0.67 0.57 1.39  2.28 1.94 4.75 
MKEA 0.86 0.67 1.91  4.05 1.52 3.39 
PNGM 0.59 0.74 1.29  7.16 2.83 7.81 
QAQ1 0.52 0.43 0.89  2.60 2.38 3.80 
RIGA 0.53 0.59 1.23  2.64 3.06 5.50 
SGPO 1.10 1.01 2.01  2.57 1.45 3.84 
TOW2 0.40 0.63 1.34  2.50 1.21 5.32 
TWTF 0.88 1.01 3.07  1.67 1.66 3.94 
UCLU 0.89 1.59 4.68  2.28 2.47 5.25 
ULAB 0.73 0.68 1.18  2.42 1.81 4.73 
UNSA 0.86 0.62 1.94  2.08 1.80 5.06 
YKRO 0.82 1.01 2.14  2.35 2.09 4.03 
ZAMB 0.51 0.64 1.02  2.82 1.13 3.21 
Average 0.88 0.89 2.23  3.11 2.04 4.94 
 

5 Conclusions 

IGS RTS provides real-time multi-GNSS satellite 
orbit and clock correction streams with reference to 
broadcast ephemeris, which allows us to obtain 
precise satellite orbit and clock products with the 
minimum latency and the highest precision. These 
products can be used in scenarios such as RTPPP 
where GNSS data needs to be processed quickly. 

In this paper, the method of using SSR correction 
information and broadcast ephemeris to recover 
precise satellite orbits and clocks is introduced in 
detail. Then, the SSRC00WHU0 mountpoint of 
Wuhan University which provides GPS, GLONASS, 
Galileo, BDS correction information is selected, and 
the precise satellite orbit and clock products of 7 days 
are recovered. Taking the final MGEX products 
released by Wuhan University Analysis Center as a 
reference, the quality of the real-time precise satellite 

orbit and clock products is evaluated. Finally, using 
the real-time products and the final products, the 
multi-GNSS observation data (GPS, GLONASS, 
Galileo and BDS) of 20 randomly distributed IGS 
stations around the world are processed in static and 
kinematic PPP modes, and the GPS observation data 
collected by aviation are processed in pseudo 
real-time kinematic PPP mode, in order to evaluate 
the application performance of real-time products and 
the positioning accuracy in RTPPP. 

The results of quality analysis show that (1) For 
the real-time orbit products, the GPS satellites can 
achieve the accuracy of about 5 cm. Galileo is a little 
worse, and its accuracy is about 8 cm. The accuracy 
of GLONASS is similar to that of BDS IGSO/MEO, 
and it can reach about 15 cm. The accuracy of BDS 
GEO satellites is low to the level of more than ten 
meters, which is the worst of all satellites; (2) For the 
real-time clock products, similarly, GPS satellites 
have the highest clock accuracy, which can reach 
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0.43 ns. Galileo satellites are basically at the same 
accuracy level as GPS satellites, with an average 
accuracy of 0.44 ns. GLONASS satellites are slightly 
worse, but they can still achieve sub-nanosecond 
accuracy of 0.91 ns. The real-time clock accuracy of 
BDS satellites is the worst at only 3.14 ns. Generally 
speaking, the real-time orbit and clock products of 
GPS and Galileo satellites have relatively higher 
accuracy, followed by GLONASS satellites. The 
accuracy of BDS satellite is relatively poor, so we 
should pay attention to it when using it. 

For the PPP performance, the experimental results 
show that (1) Although the positioning accuracy of 
static PPP, is slightly worse than that using the final 
products, the average positioning accuracy of 1.57 
cm, 0.76 cm and 1.67 cm in east, north and up 
directions can be achieved by using real-time 
products. In general, the positioning accuracy in the 
north direction is the best, followed by the east 
direction and up directions; (2) For pseudo real-time 
kinematic GPS PPP, the positioning results obtained 
by using the final products and the real-time products 
are very consistent, and the RMS of the position 
difference in the directions of east, north and up are 
8.1 cm, 2.1 cm, 17.9 cm and 8.5 cm, 2.4 cm, 16.5 cm, 
respectively, compared with the reference results; (3) 
For GPS, GLONASS, Galileo and BDS kinematic 
PPP, the average positioning accuracy in east, north 
and up directions is 3.11 cm, 2.04 cm and 4.94 cm, 
respectively. 

The study basically shows the advantages of the 
solution of using SSR correction stream to recover 
the precise satellite orbit and clock products in real 
time, that is, low latency and high precision, which 
can play an important role in the application of 
real-time precise positioning. 
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Abstract: Simultaneous Localization and Mapping 
(SLAM) achieves the purpose of simultaneous 
positioning and map construction based on 
self-perception. The paper makes an overview in 
SLAM including Lidar SLAM, visual SLAM, and 
their fusion. For Lidar or visual SLAM, the survey 
illustrates the basic type and product of sensors, open 
source system in sort and history, deep learning 
embedded, the challenge and future. Additionally, 
visual inertial odometry is supplemented. For Lidar 
and visual fused SLAM, the paper highlights the 
multi-sensors calibration, the fusion in hardware, data, 
task layer. The open question and an envision in 6G 
wieless networks with SLAM end the paper. The 
contributions of this paper can be summarized as 
follows: the paper provides a high quality and 
full-scale overview in SLAM. It's very friendly for 
new researchers to hold the development of SLAM 
and learn it very obviously. Also, the paper can be 
considered as dictionary for experienced researchers 
to search and find new interested orientation. 

Keywords: Survey, SLAM (Simultaneous 
Localization and Mapping), Lidar SLAM, Visual 
SLAM, Lidar and Vision Fused, User guidance. 

1. Introduction 

SLAM is the abbreviation of Simultaneous 
Localization and Mapping, which contains two main 

tasks, localization and mapping. It is a significant 
open problem in mobile robotics: to move precisely, a 
mobile robot must have an accurate environment map; 
however, to build an accurate map, the mobile robot’s 
sensing locations must be known precisely [1]. In this 
way, simultaneous map building and localization can 
be seen to present a question of “which came first, 
the chicken or the egg?” (The map or the motion?)  

In 1990, [2] firstly proposed the use of the EKF 
(Extended Kalman Filter) for incrementally 
estimating the posterior distribution over robot pose 
along with the positions of the landmarks. In fact, 
starting from the unknown location of the unknown 
environment, the robot locates its own position and 
attitude through repeated observation of 
environmental features in the movement process, and 
then builds an incremental map of the surrounding 
environment according to its own position, so as to 
achieve the purpose of simultaneous positioning and 
map construction. Localization is a very complex and 
hot point in recent years. The technologies of 
localization depend on environment and demand for 
cost, accuracy, frequency and robustness, which can 
be achieved by GPS (Global Positioning System), 
IMU (Inertial Measurement Unit), and wireless signal, 
etc.[3,4]. But GPS can only work well outdoors and 
IMU system has cumulative error [5]. The technology 
of wireless, as an active system, can't make a balance 
between cost and accuracy. With the fast 
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development, SLAM equipped with Lidar, camera, 
IMU and other sensors springs up in last years. 

Begin with filter-based SLAM, methods called 
incremental smoothing and mapping (iSAM, etc.) 
gradually become the fouc. But Graph-based SLAM 
play a dominant role now (such as g2o, etc.). The 
algorithm derives from KF (Kalman Filter), EKF and 
PF (Particle Filter) to graph-based optimization. And 
single thread has been replaced by multi-thread. The 
technology of SLAM also changed from the earliest 
prototype of military use to later robot applications 
with the fusion of multi sensors. 

The organization of this paper can be 
summarized as follows: in Section II, Lidar SLAM 
including Lidar sensors, open source Lidar SLAM 
system, deep learning in Lidar and challenge as well 
as future will be illustrated. Section III highlights the 
visual SLAM including camera sensors, different 
density of open source visual SLAM system, visual 
inertial odometry SLAM, deep learning in visual 
SLAM and future. In Section IV, the fusion of Lidar 
and vision will be demonstrated. Finally, the paper 
identifies several directions for future research of 
SLAM and provides high quality and full-scale user 
guide for new researchers in SLAM. 

Table 1 Comparison of the different methods 
Methods Feature 

Lidar SLAM more stable and robust 
Visual SLAM cheaper  

Lidar and Visual SLAM more powerful 

2. Lidar SLAM 

In 1991, [1] used multiple servo-mounted sonar 
sensors and EKF filter to equip robots with SLAM 
system. Begin with sonar sensors, the birth of Lidar 
makes SLAM system more reliable and robustness. 

2.1 Lidar Sensors 

Lidar sensors can be divided into 2D Lidar and 
3D Lidar, which are defined by the number of Lidar 
beams. In terms of production process, Lidar can also 
be divided into mechanical Lidar, hybrid solid-state 
Lidar like MEMS (micro-electro-mechanical) and 
solid-state Lidar. Solid-state Lidar can be produced 
by the technology of phased array and flash. 

Velodyne: In mechanical Lidar, it has VLP-16, 
HDL-32E and HDL-64E. In hybrid solid-state Lidar, 
it has Ultra puck auto with 32E.   

SLAMTEC: it has low cost Lidar and robot 
platform such RPLIDAR A1, A2 and R3.  

Ouster: it has mechanical Lidar from 16 to 128 
channels. 

Quanergy: S3 is the first issued solid-state 
Lidar in the world and M8 is the mechanical Lidar. 
The S3-QI is the micro solid-state Lidar. 

Ibeo: It has Lux 4L and Lux 8L in mechanical 
Lidar. Cooperated with Valeo, it issued a hybrid 
solid-state Lidar named Scala. 

In the trend, miniaturization and lightweight 
solid state Lidar will occupied the market and be 
satisfied with most application. Other Lidar 
companies include but not limited to sick, Hokuyo, 
HESAI, RoboSense, LeddarTech, ISureStar, 
benewake, Livox, Innovusion, Innoviz, Trimble, 
Leishen Intelligent System. 

 
Figure 1. Lidar Sensors 

2.2 Lidar SLAM System 

Lidar SLAM system is reliable in theory and 
technology. [6] illustrated the theory in math about 
how to simultaneous localization and mapping with 
2D Lidar based on probabilistic. Furthre, [7] make 
surveys about 2D Lidar SLAM system. 

Table 2 Comparison of the different Lidar SLAM 
Methods Feature 

2D Lidar SLAM easier to positioning 
3D Lidar SLAM powerful to perceive 
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2.2.1 2D SLAM 

Gmapping: it is the most used SLAM package 
in robots based on RBPF (Rao-Blackwellisation 
Partical Filter) method. It adds scan-match method to 
estimate the position [6,8]. It is the improved version 
with Grid map based on FastSLAM [9,10]. 

HectorSlam: it combines a 2D SLAM system  
and 3D navigation with scan-match technology and 
an inertial sensing system [11]. 

KartoSLAM: it is a graph-based SLAM system 
[12].  

LagoSLAM: its basic is the graph-based SLAM, 
which is the minimization of a nonlinear non-convex 
cost function [13].  

CoreSLAm: it is an algorithm to be understood 
with minimum loss of performance [14].  

Cartographer: it is a SLAM system from 
Google [15]. It adopted sub-map and loop closure to 
achieve a better performance in product grade. The 
algorithm can provide SLAM in 2D and 3D across 
multiple platforms and sensor configurations. 

2.2.2 3D SLAM 

Loam: it is a real-time method for state 
estimation and mapping using a 3D Lidar [16]. It also 
has back and forth spin version and continuous 
scanning 2D Lidar version. 

Lego-Loam: it takes in point cloud from a 
Velodyne VLP-16 Lidar (placed horizontal) and 
optional IMU data as inputs. The system outputs 6D 
pose estimation in real-time and has global 
optimization and loop closure [17]. 

Cartographer: it supports 2D and 3D SLAM 
[15]. 

IMLS-SLAM: it presents a new low-drift 
SLAM algorithm based only on 3D LiDAR data 
based on a scan-to-model matching framework [18]. 

2.2.3 Deep Learning with Lidar SLAM 

Feature & Detection: PointNetVLAD [19] 
allows end-to-end training and inference to extract 
the global descriptor from a given 3D point cloud to 
solve point cloud based retrieval for place recognition. 
VoxelNet [20] is a generic 3D detection network that 
unifies feature extraction and bounding box 

prediction into a single stage, end-to-end trainable 
deep network. Other work can be seen in BirdNet 
[21]. LMNet [22] describes an efficient single-stage 
deep convolutional neural network to detect objects 
and outputs an objectness map and the bounding box 
offset values for each point. PIXOR [23] is a 
proposal-free, single-stage detector that outputs 
oriented 3D object estimates decoded from 
pixel-wise neural network predictions. Yolo3D [24] 
builds on the success of the one-shot regression 
meta-architecture in the 2D perspective image space 
and extend it to generate oriented 3D object bounding 
boxes from LiDAR point cloud. PointCNN [25] 
proposes to learn a X-transformation from the input 
points. The X-transformation is applied by 
element-wise product and sum operations of typical 
convolution operator. MV3D [26] is a sensory-fusion 
framework that takes both Lidar point cloud and 
RGB images as input and predicts oriented 3D 
bounding boxes. PU-GAN [27] presents a new point 
cloud upsampling network based on a generative 
adversarial network (GAN). Other similar work can 
be seen in this best paper in CVPR2018 but not 
limited to [28].  

Recognition & Segmentation: In fact, the 
method of segmentation to 3D point cloud can be 
divided into Edge-based, region growing, model 
fitting, hybrid method, machine learning application 
and deep learning [29]. Here the paper focuses on the 
methods of deep learning. PointNet [30] designs a 
novel type of neural network that directly consumes 
point clouds, which has the function of classification, 
segmentation and semantic analysis. PointNet++ [31] 
learns hierarchical features with increasing scales of 
contexts. VoteNet [32] constructs a 3D detection 
pipeline for point cloud as a end-to-end 3D object 
detection network, which is based on PointNet++. 
SegMap [33] is a map representation solution to the 
localization and mapping problem based on the 
extraction of segments in 3D point clouds. 
SqueezeSeg [34-36] are convolutional neural nets 
with recurrent CRF (Conditional random fields) for 
real-time road-object segmentation from 3d Lidar 
point cloud. PointSIFT [37] is a semantic 
segmentation framework for 3D point clouds. It is 
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based on a simple module which extracts features 
from neighbor points in eight directions. PointWise 
[38] presents a convolutional neural network for 
semantic segmentation and object recognition with 
3D point clouds. 3P-RNN [39] is a novel end-to-end 
approach for unstructured point cloud semantic 
segmentation along two horizontal directions to 
exploit the inherent contextual features. Other similar 
work can be seen but not limited to SPG [40] and the 
review [29]. SegMatch [41] is a loop closure method 
based on the detection and matching of 3D segments. 
Kd-Network [42] is designed for 3D model 
recognition tasks and works with unstructured point 
clouds. DeepTemporalSeg [43] propose a deep 
convolutional neural network (DCNN) for the 
semantic segmentation of a LiDAR scan with 
temporally consistency. LU-Net [44] achieve the 
function of semantic segmentation instead of 
applying some global 3D segmentation method. 
Other similar work can be seen but not limited to 
PointRCNN [45]. 

Localization: L3-Net [46] is a novel 
learning-based LiDAR localization system that 
achieves centimeter-level localization accuracy. 
SuMa++ [47] computes semantic segmentation 
results in point-wise labels for the whole scan, 
allowing us to build a semantically-enriched map 
with labeled surfels and  improve the projective 
scan matching via semantic constraints. 

Figure 2. Deep Learning in Lidar SLAM 

2.3 Challenge and Future 

2.3.1 Cost and Adaptability 

The advantage of Lidar is that it can provide 3D 
information, and it is not affected by night and light 
change. In addition, the angle of view is relatively 
large and can reach 360 degrees. But the 
technological threshold of Lidar is very high, which 
lead to long development cycle and unaffordable cost 
on a large scale. In the future, miniaturization, 
reasonable cost, solid state, and achieving high 
reliability and adaptability is the trend. 

2.3.2 Low-Texture and Dynamic Environment 

Most SLAM system can just work in a fixed 
environment but things change constantly. Besides, 
low-Texture environment like long corridor and big 
pipeline will make trouble for Lidar SLAM. [48] uses 
IMU to assist 2D SLAM to solve above obstacles. 
Further, [49] incorporates the time dimension into the 
mapping process to enable a robot to maintain an 
accurate map while operating in dynamical 
environments. How to make Lidar SLAM more 
robust to low-texture and dynamic environment, and 
how to keep map updated should be taken into 
consideration more deeply. 

2.3.3 Adversarial Sensor Attack 

Deep Neural Network is easily attacked by 
adversarial samples, which is also proved in  
camera-based perception. But in Lidar-based 
perception, it is highly important but unexplored. By 
relaying attack, [50] firstly spoofs the Lidar with 
interference in output data and distance estimation. 
The novel saturation attack completely incapacitate a 
Lidar from sensing a certain direction based on 
Velodyne’s VLP-16. [51] explores the possibility of 
strategically controlling the spoofed attack to fool the 
machine learning model. The paper regards task as an 
optimization problem and design modeling methods 
for the input perturbation function and the objective 
function., which improves the attack success rates to 
around 75%. The adversarial sensor attack will spoof 
the SLAM system based on Lidar point cloud, which 
is invisible as hardly found and defended. In the case, 
research on how to prevent the Lidar SLAM system 
from adversarial sensor attack should be a new topic. 
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3. Visual SLAM 

As the development of CPU and GPU, the 
capability of graphics processing  becomes more 
and more powerful. Camera sensors getting cheaper, 
more lightweight and more versatile at the same time. 
The past decade has seen the rapid development of 
visual SLAM. Visual SLAM using camera also make 
the system cheaper and smaller compare with Lidar 
system. Now, visual SLAM system can run in micro 
PC and embedded device, even in mobile devices like 
smart phones [52-56].  

Visual SLAM includes collection of sensors' 
data such as camera or inertial measurement unit , 
Visual Odometry or Visual Inertial Odometry in front 
end, Optimization in back end, Loop closure in back 
end and Mapping [57].  Relocalization is the 
additional modules for stable and accurate visual 
SLAM [58].  

In process of Visual Odometry, in addition to the 
method based on features or template matching, or 
correlation methods to determine the motion of the 
camera, there is another method relying on the 
Fourier-Mellin Transform [59]. [60] and [61] give the 
example in the environment with  no distinct visual 
features when use the ground-facing camera. 

3.1 Visual Sensors 

The most used sensors that visual SLAM based 
are cameras. In detail, camera can be divided into 
monocular camera, stereo camera, RGB-D camera, 
event camera, etc. 

Monocular camera: visual slam based on 
monocular camera have a scale with real size of track 
and map. That's say that the real depth can't be got by 
monocular camera, which called Scale Ambiguity 
[62]. The SLAM based on Monocular camera has to 
initialization, and face the problem of drift. 

Stereo camera: stereo camera is a combination 
of two monocular camera but the distance called 
baseline between the two monocular camera is 
known. Although the depth can be got based on 
calibration, correction, matching and calculation, the 
process will be a waste of lost of resources.  

RGB-D camera: RGB-D camera also called 
depth camera because the camera can output depth in 

pixel directly. The depth camera can be realized by 
technology of stereo, structure-light and TOF. The 
theory of Structure-light is that infrared laser emits 
some pattern with structure feature to the surface of 
object. Then the IR camera will collect the change of 
patter due to the different depth in the surface. TOF 
will measure the time of laser's flight to calculate the 
distance. 

Event camera: [63] illustrates that instead of 
capturing images at a fixed rate, event camera 
measures per-pixel brightness changes 
asynchronously. Event camera has very high dynamic 
range (140 dB vs. 60 dB), high temporal resolution 
(in the order of us), low power consumption, and do 
not suffer from motion blur. Hence, event cameras 
can performance better than traditional camera in 
high speed and high dynamic range. The example of 
the event camera are Dynamic Vision Sensor [64-67], 
Dynamic Line Sensor [68], Dynamic and 
Active-Pixel Vision Sensor [69], and Asynchronous 
Time-based Image Sensor [70]. 

Next the product and company of visual sensors 
will be introduced: 

Microsoft: Kinectc v1(structured-light), Kinect 
v2(TOF), Azure Kinect(with microphone and IMU). 

Intel: 200 Series, 300 Series, Module D400 
Series, D415(Active IR Stereo, Rolling shutter), 
D435(Active IR Stereo, Global Shutter), D435i(D435 
with IMU). 

Stereolabs ZED: ZED Stereo camera(depth up 
to 20m). 

MYNTAI: D1000 Series(depth camera), 
D1200(for smart phone), S1030 Series(standard 
stereo camera). 

Occipital Structure: Structure Sensor(Suitable 
for ipad). 

Samsung: Gen2 and Gen3 dynamic vision 
sensors and event-based vision solution [65]. 

Other depth camera can be listed as follows but 
not limited to Leap Motion, Orbbec Astra, Pico 
Zense, DUO, Xtion, Camboard, IMI, Humanplus, 
PERCIPIO.XYZ, PrimeSense. Other event camera 
can be listed as follows but not limited to iniVation, 
AIT(AIT Austrian Institute of Technology), 
SiliconEye, Prophesee, CelePixel, Dilusense. 
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Figure 3. Visual Sensors 

3.2 Visual SLAM System 

The method of utilizing information from image 
can be classified into direct method and feature based 
method. Direct method leads to semiDense and dense 
construction while feature based method cause sparse 
construction. Next, some visual slam will be 
introduced ( ATAM7 is a visual SLAM toolkit for 
beginners [58]):  

Table 3 Comparison of the different Visual SLAM 
Methods Feature 

Sparse Vslam positioning, faster 
Semi-Dense Vslam Balance 

Dense Vslam Reconstruction, slow 

3.2.1 Sparse Visual SLAM 

MonoSLAM: it (monocular) is the first 
real-time mono SLAM system, which is based on 
EKF [71].  

PTAM: it (monocular) is the first SLAM system 
that parallel tracking and mapping. It firstly adopts 
Bundle Adjustment to optimize and concept of key 
frame [54,72]. The later version supports a trivially 
simple yet effective relocalization method [73]. 

ORB-SLAM: it (monocular) uses three threads: 
Tracking, Local Mapping and Loop Closing [52,74]. 
ORB-SLAM v2 [75] supports monocular, stereo, and 
RGB-D cameras. CubemapSLAM [76] is a  SLAM 
system for monocular fisheye cameras based on 
ORB-SLAM. Visual Inertial ORB-SLAM [77,78] 
explains the initialization process of IMU and the 
joint optimization with visual information. 

proSLAM: it (stereo) is a lightweight visual 
SLAM system with easily understanding [79]. 

ENFT-sfm: it (monocular) is a feature tracking 
method which can efficiently match feature point 
correspondences among one or multiple video 
sequences [80]. The updated version ENFT-SLAM 
can run in large scale. 

OpenVSLAm: it (all types of cameras) [81] is 
based on an indirect SLAM algorithm with sparse 
features. The excellent point of OpenVSLAM is that 
the system supports perspective, fisheye, and 
equirectangular, even the camera models you design. 

TagSLAM: it realizes SLAM with AprilTag 
fiducial markers [82]. Also, it provides a front end to 
the GTSAM factor graph optimizer, which can design 
lots of experiments. 

Other similar work can be listed as follows but 
not limited to UcoSLAM [83]. 

3.2.2 SemiDense Visual SLAM 

LSD-SLAM:  it (monocular) proposes a novel 
direct tracking method which operates on Lie Algebra 
and direct method [84]. [85] make it supporting 
stereo cameras and [86] make it supporting 
omnidirectional cameras. Other similar work with 
omnidirectional cameras can be seen in [87]. 

SVO: it (monocular) is Semi-direct Visual 
Odoemtry [88]. It uses sparse model-based image 
alignment to get a fast speed. The update version is 
extended to multiple cameras, fisheye and 
catadioptric ones [78]. [78] gives detailed math proof 
about VIO. CNN-SVO [89] is the version of  SVO 
with the depth prediction from a single-image depth 
prediction network. 

DSO:  it (monocular) [90,91] is a new work 
from the author of LSD-SLAM [84]. The work 
creates a visual odoemtry based on direct method and 
sparse method without detection and description of 
feature point. 

EVO: it (Event camera) [92] is an event-based 
visual odometry algorithm. Our algorithm is 
unaffected by motion blur and operates very well in 
challenging, high dynamic range conditions with 
strong illumination changes. Other semiDense SLAM 
based on event camera can be seen in [93]. Other VO 
(visual odometry) system based on event camera can 
be seen in [94,95]. 
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3.2.3 Dense Visual SLAM 

DTAM:  it (monocular) can reconstruct 3D 
model in real time based on minimizing a global 
spatially regularized energy functional in a novel 
non-convex optimization framework, which is called 
direct method [96,97]. 

MLM SLAM: it (monocular) can reconstruct 
dense 3D model online without graphics processing 
unit (GPU) [98]. The key contribution is a 
multi-resolution depth estimation and spatial 
smoothing process. 

Kinect Fusion: it (RGB-D) is almost the first 
3D reconstruction system with depth camera 
[99,100]. 

DVO: it (RGB-D)  proposes a dense visual 
SLAM method, an entropy-based similarity measure 
for keyframe selection and loop closure detection 
based g2o framework [101-103]. 

RGBD-SLAM-V2: it (RGB-D) can reconstruct 
accurate 3D dense model without the help of other 
sensors [104]. 

Kintinuous: it (RGB-D) is a visual SLAM 
system with globally consistent point and mesh 
reconstructions in real-time [105-107]. 

RTAB-MAP: it (RGB-D) supports simultaneous 
localization and mapping but it's hard to be basis to 
develop upper algorithm [108-110]. The latter version 
support both visual and Lidar SLAM [111]. 

Dynamic Fusion: it (RGB-D) presents the first 
dense SLAM system capable of reconstructing 
non-rigidly deforming scenes in real-time based 
Kinect Fusion [112]. VolumeDeform [113] also 
realizes real-time non-rigid reconstruction but not 
open source. The similar work can be seen in 
Fusion4D [114]. 

Elastic Fusion: it (RGB-D) is a real-time dense 
visual SLAM system capable of capturing 
comprehensive dense globally consistent surfel-based 
maps of room scale environments explored using an 
RGB-D camera [115,116]. 

InfiniTAM: it (RGB-D) is a real time 3D 
reconstruction system with CPU in Linux, IOS, 
Android platform [55,117,118]. 

Bundle Fusion: it (RGB-D) supports robust 
tracking with recovery from gross tracking failures 

and re-estimates the 3D model in real-time to ensure 
global consistency [119]. 

KO-Fusion: it (RGB-D) [120] proposes a dense 
RGB-D SLAM system with kinematic and odometry 
measurements from a wheeled robot. 

SOFT-SLAM: it (stereo) [121] can create dense 
map with the advantages of large loop closing, which 
is based on SOFT [122] for pose estimation. 

Other works can be listed as follows but not 
limited to SLAMRecon, RKD-SLAM [123] and 
RGB-D SLAM [124]. Maplab [125], PointNVSNet 
[126], MID-Fusion [127] and MaskFusion [128] 
will introduced in next chapter. 

3.2.4 Visual Inertial Odometry SLAM 

The determination of visual slam is technically 
challenging. Monocular visual SLAM has problems 
such as necessary initialization, scale ambiguity and 
scale drift [129]. Although stereo camera and RGB-D 
camera can solve the problems of initialization and 
scale, some obstacles can't be ignored such as fast 
movement (solved with Global Shuttle or fisheye 
even panoramic camera), small field of view, large 
calculation, occlusion, feature loss, dynamic scenes 
and changing light. Recently, VIO (visual inertial 
odometry SLAM) becomes the popular research. 

First of all, [130-132] start some try in VIO. 
[77,78] give the samples and math proof in 
visual-inertial odeometry. [133] use several rounds of 
visual-inertial bundle adjustment to make a robust 
initialization for VIO. Specially, tango [134], Dyson 
360 Eye and hololens [135] are the real products of 
VIO and receive good feedback. In addition to this, 
ARkit (filter-based) from Apple, ARcore (filter-based) 
from Google, Inside-out from uSens are the 
technology of VIO. PennCOSYVIO [136] 
synchronizes data from a VI-sensor (stereo camera 
and IMU), two Project Tango hand-held devices, and 
three GoPro Hero 4 cameras and calibrates 
intrinsically and extrinsically. Next some open source 
VIO system will be introduced [137]: 

SSF: it (loosely-coupled, filter-based) is a time 
delay compensated single and multi sensor fusion 
framework based on an EKF [138]. 

MSCKF: it (tightly-coupled, filter-based) is 
adopted by Google Tango based on extended Kalman 
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filter [139]. But the similar work called 
MSCKF-VIO [140] open the source. 

ROVIO: it (tightly-coupled, filter-based) is an 
extended Kalman Filter with tracking of both 3D 
landmarks and image patch features [141]. It supports 
monocular camera. 

OKVIS: it (tightly-coupled, optimization-based) 
is an open and classic Keyframe-based Visual-Inertial 
SLAM [130]. It supports monocular and stereo 
camera based sliding window estimator. 

VINS: VINS-Mono (tightly-coupled, 
optimization-based) [53,142,143] is a real-time 
SLAM framework for Monocular Visual-Inertial 
Systems. The open source code runs on Linux, and is 
fully integrated with ROS. VINS-Mobile [144,145] 
is a real-time monocular visual-inertial odometry 
running on compatible iOS devices. Furthermore, 
VINS-Fusion supports multiple visual-inertial sensor 
types (GPS, mono camera + IMU, stereo cameras + 
IMU, even stereo cameras only). It has online spatial 
calibration, online temporal calibration and visual 
loop closure. 

ICE-BA: it (tightly-coupled, optimization-based) 
presents an incremental, consistent and efficient 
bundle adjustment for visual-inertial SLAM, which  
performs in parallel both local BA over the sliding 
window and global BA over all keyframes, and 
outputs camera pose and updated map points for each 
frame in real-time [146]. 

Maplab: it (tightly-coupled, optimization-based) 
is an open, research-oriented visual-inertial mapping 
framework, written in C++, for creating, processing 
and manipulating multi-session maps. On the one 
hand, maplab can be considered as a ready-to-use 
visual-inertial mapping and localization system. On 
the other hand, maplab provides the research 
community with a collection of multi-session 
mapping tools that include map merging, 
visual-inertial batch optimization, loop closure, 3D 
dense reconstruction [125]. 

Other solutions can be listed as follows but not 
limited to VI-ORB (tightly-coupled, 
optimization-based) [77] (the works by the author of 
ORB-SLAM, but not open source), StructVIO [147]. 
RKSLAM [148] can reliably handle fast motion and 

strong rotation for AR applications. Other VIO 
system based on event camera can be listed as 
follows but not limited to [149-151]. mi-VINS [152] 
uses multiple IMU, which can work if IMU sensor 
failures. 

In VIO, visual images can enhance the inertial 
navigation algorithm. To deal with the correlation 
between the generated visual odometry and also 
about the multiframe visual odometry, [153] 
integrates the features tracked from all overlapping 
image frames by a sequential de-correlation the 
Kalman filter measurement update with fever 
computation resources consumption. The proposed 
method is referred as multi-frame visual odometry 
(MFVO) [154]. In the image-aided inertial integrated 
navigation, the relative positions of visual odometry 
are pairwise correlated in terms of time. The shaping 
filter proposed [155] uses Cholesky factors based on 
that the measurement noise is only correlated with 
the ones from the previous epoch. 

VIO SLAM based on deep learning can be seen 
in [156]. It shows a network that performs 
visual-inertial odometry (VIO) without inertial 
measurement unit (IMU) intrinsic parameters or the 
extrinsic calibration between an IMU and camera. 
[157] provides a network to avoid the calibration 
between camera and IMU. 

3.2.5 Deep Learning with Visual SLAM 

Nowadays, deep learning plays a critical role in 
the maintenance of computer vision. As the 
development of visual SLAM, more and more focus 
are paid into deep learning with SLAM. The term 
"semantic SLAM" refers to an approach that includes 
the semantic information into the SLAM process to 
enhance the performance and representation by 
providing high-level understanding, robust 
performance, resource awareness, and task driven 
perception. Next, we will introduce the implement of 
SLAM with semantic information in these aspects: 

Feature & Detection: Pop-up SLAM 
(Monocular) [158] proposes real-time monocular 
plane SLAM to demonstrate that scene understanding 
could improve both state estimation and dense 
mapping especially in low-texture environments. The 
plane measurements come from a pop-up 3D plane 
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model applied to each single image. [159] gets 
semantic key points predicted by a convolutional 
network (convnet). LIFT [160] can get more dense 
feature points than SIFT. DeepSLAM [161] has a 
significant performance gap in the presence of image 
noise when catch the feature points. SuperPoint [162] 
presents a self-supervised framework for training 
interest point detectors and descriptors suitable for a 
large number of multiple-view geometry problems in 
computer vision. [163] proposes to use the 
easy-to-labeled 2D detection and discrete viewpoint 
classification together with a light-weight semantic 
inference method to obtain rough 3D object 
measurements. GCN-SLAM [164] presents a deep 
learning-based network, GCNv2, for generation of 
key points and descriptors. [165] fuses information 
about 3D shape, location, and, if available, semantic 
class. SalientDSO [166] can realize visual saliency 
and environment perception with the aid of deep 
learning. [167] integrates the detected objects as the 
quadrics models into the SLAM system. CubeSLAM 
(Monocular) is a 3D Object Detection and SLAM 
system [168] based on cube model. It achieve 
object-level mapping, positioning, and dynamic 
object tracking. [169] combines the cubeSLAM 
(high-level object) and Pop-up SLAM (plane 
landmarks) to make map more denser, more compact 
and semantic meaningful compared to feature point 
based SLAM. MonoGRNet [170] is a geometric 
reasoning network for monocular 3D object detection 
and localization. Feature based on event camera can 
be seen but not limited to [171,172]. About the 
survey in deep learning for detection, [173] could be 
a good choice.  

Recognition & Segmentation: SLAM++ (CAD 
model) [174] presents the major advantages of a new 
‘object oriented’ 3D SLAM paradigm, which takes 
full advantage in the loop of prior knowledge that 
many scenes consist of repeated, domain-specific 
objects and structures. [175] combines the state-of-art 
deep learning method and LSD-SLAM based on 
video stream from a monocular camera. 2D semantic 
information are transferred to 3D mapping via 
correspondence between connective keyframes with 
spatial consistency. Semanticfusion (RGBD)  [176] 

combines CNN (Convolutional Neural Network) and 
a state-of-the-art dense Simultaneous Localization 
and Mapping (SLAM) system, ElasticFusion [116] to 
build a semantic 3D map. [177] leverages sparse, 
feature-based RGB-D SLAM, image-based 
deep-learning object detection and 3D unsupervised 
segmentation. MarrNet [178] proposes an 
end-to-end trainable framework, sequentially 
estimating 2.5D sketches and 3D object shapes. 
3DMV (RGB-D) [179] jointly combines RGB color 
and geometric information to perform 3D semantic 
segmentation of RGB-D scans. Pix3D [180] study 
3D shape modeling from a single image. 
ScanComplete [181] is a data-driven approach 
which takes an incomplete 3D scan of a scene as 
input and predicts a complete 3D model, along with 
per-voxel semantic labels. Fusion++ [182] is an 
online object-level SLAM system which builds a 
persistent and accurate 3D graph map of arbitrary 
reconstructed objects. As an RGB-D camera browses 
a cluttered indoor scene, Mask-RCNN instance 
segmentations are used to initialise compact 
per-object Truncated Signed Distance Function 
(TSDF) reconstructions with object size dependent 
resolutions and a novel 3D foreground mask. 
SegMap [183] is a map representation based on 3D 
segments allowing for robot localization, 
environment reconstruction, and semantics extraction. 
3D-SIS [184] is a novel neural network architecture 
for 3D semantic instance segmentation in commodity 
RGB-D scans. DA-RNN [185] uses a new recurrent 
neural network architecture for semantic labeling on 
RGB-D videos. DenseFusion [186] is a generic 
framework for estimating 6D pose of a set of known 
objects from RGB-D images. Other work can be seen 
in CCNet [187]. To recognize based on event camera, 
[188-191] are the best paper to be investigated. 

Recovery Scale: CNN-SLAM (Monocular) 
[192] estimates the depth with deep learning. Another 
work can be seen in DeepVO [193], GS3D [194] . 
UnDeepVO [195] can get the 6-DoF pose and the 
depth using a monocular camera with deep learning. 
Google proposes the work [196] that present a 
method for predicting dense depth in scenarios where 
both a monocular camera and people in the scene are 
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freely moving based on unsupervised learning. Other 
methods to get real scale in Monocular can be seen in 
[197,198]. GeoNet [199] is a jointly unsupervised 
learning framework for monocular depth, optical 
flow and ego-motion estimation from videos. 
CodeSLAM [200] proposes a depth map from single 
image, which can be optimised efficiently jointly 
with pose variables. Mono-stixels [201] uses the 
depth, motion and semantic information in dynamic 
scene to estimate depth. GANVO [202] uses an  
unsupervised learning framework for 6-DoF pose and 
monocular depth map from unlabelled image, using 
deep convolutional Generative Adversarial Networks. 
GEN-SLAM [203] outputs the dense map with the 
aid of conventional geometric SLAM and the 
topological constraint in monocular. [204] proposes a 
training objective that is invariant to changes in depth 
range and scale. Other similar work can be seen in 
DeepMVS [205] and DeepV2D [206]. Based on 
event camera, depth estimation can be applied in 
monocular camera [207,208] and stereo camera 
[209].  

Pose Output & Optimization:  [210] is a 
stereo-VO under the synchronicity. [211] utilizes a 
CNN to estimate motion from optical flow. PoseNet 
[212] can get the 6-DOF pose from a single RGB 
image without the help of optimization. VInet 
(Monocular) [213] firstly estimates the motion in 
VIO, reducing the dependence of manual 
synchronization and calibration. DeepVO 
(Monocular) [214] presents a novel end-to-end 
framework for monocular VO by using deep 
Recurrent Convolutional Neural Networks (RCNNs). 
The similar work can be seen in SFMlearner [215] 
and SFM-Net [216]. VSO [217] proposes a novel 
visual semantic odometry (VSO) framework to 
enable medium-term continuous tracking of points 
using semantics. MID-Fusion (RGBD, dense point 
cloud) [127] estimates the pose of each existing 
moving object using an object-oriented tracking 
method and associate segmented masks with existing 
models and incrementally fuse corresponding color, 
depth, semantic, and foreground object probabilities 
into each object model. Other similar works can be 
seen in VidLoc [218]. Besides, [219,220] are using 

event camera to output the ego-motion. 
Long-term Localization: [221] formulates an 

optimization problem over sensor states and semantic 
landmark positions that integrates metric information, 
semantic information, and data associations. [222] 
proposes a novel unsupervised deep neural network 
architecture of a feature embedding for visual loop 
closure. [223] shows the semantic information is 
more effective than the traditional feature descriptors. 
X-View [224] leverages semantic graph descriptor 
matching for global localization, enabling 
localization under drastically different view-points. 
[225] proposes a solution that represents hypotheses 
as multiple modes of an equivalent non-Gaussian 
sensor model to determine object class labels and 
measurement-landmark correspondences. About the 
application based on event camera, [226] are worthy 
to be read.  

Dynamic SLAM: RDSLAM [227]  is a novel 
real-time monocular SLAM system which can 
robustly work in dynamic environments based on a 
novel online keyframe representation and updating 
method. DS-SLAM [228] is a SLAM system with 
semantic information based on optimized 
ORB-SLAM. The semantic information can make 
SLAM system more robust in dynamic environment. 
MaskFusion (RGB-D, dense point cloud) is a 
real-time, object-aware, semantic and dynamic 
RGB-D SLAM system [128] based on Mask R-CNN 
[229]. The system can label the objects with semantic 
information even in continuously and independent 
motion. The related work can be seen in Co-Fusion 
[230]. Detect-SLAM [231] integrates SLAM with a 
deep neural network based object detector to make 
the two functions mutually beneficial in an unknown 
and dynamic environment. DynaSLAM [232] is a 
SLAM system for monocular, stereo and RGB-D 
camera in dynamic environments with aid of static 
map. StaticFusion [233] proposes a method for 
robust dense RGB-D SLAM in dynamic 
environments which detects moving objects and 
simultaneously reconstructs the background structure. 
The related work based on dynamic environment can 
be also seen in RGB-D SLAM [124] and [234-236]. 

Recently, some works utilizes deep-learning to 
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dominate the whole process of SLAM. SimVODIS 
[237] can output the depth and the relative pose 
between frames, while detecting objects and 
segmenting the object boundaries. 

 
Figure 4. Deep Learning in Visual SLAM 

3.3 Challenge and Future 

3.3.1 Robustness and Portability 

Visual SLAM still face some important 
obstacles like the illumination condition, high 
dynamic environment, fast motion, vigorous rotation 
and low texture environment. Firstly, global shutter 
instead of rolling shutter is fundamental to achieve 
accurate camera pose estimation. Event camera such 
as dynamic vision sensors is capable of producing up 
to one million events per second which is enough for 
very fast motions in high speed and high dynamic 
range. Secondly, using semantic features like edge, 
plane, surface features, even reducing feature 
dependencies, such as tracking with join edges, direct 
tracking, or a combination of machine learning may 
become the better choice. Thirdly, based 
mathematical machinery for SfM/SLAM, the precise 
mathematical formulations to outperform implicitly 
learned navigation functions over data is preferred. 

The future of SLAM has can be expected that 
one is SLAM based on smart phones or embedded 
platforms such as UAV (unmanned aerial vehicle) 
and another is detailed 3D reconstruction, scene 
understanding with deep learning.  How to balance 
real-time and accuracy is the vital open question. The 
solutions pertaining to dynamic, unstructured, 
complex, uncertain and large-scale environments are 
yet to be explored [238]. 

3.3.2 Multiple Sensors Fusion 

The actual robots and hardware devices usually 
do not carry only one kind of sensor, and often a 
fusion of multiple sensors. For example, the current 
research on VIO on mobile phones combines visual 
information and IMU information to realize the 
complementary advantages of the two sensors, which 
provides a very effective solution for the 
miniaturization and low cost of SLAM. DeLS-3D 
[239] design is a sensor fusion scheme which 
integrates camera videos, motion sensors (GPS/IMU), 
and a 3D semantic map in order to achieve robustness 
and efficiency of the system. There are sensors listed 
as follows but not limited to Lidar, Sonar, IMU, IR, 
camera, GPS, radar, etc. The choice of sensors is 
dependent on the environment and required type of 
map. 

3.3.3 Semantics SLAM 

In fact, humans recognize the movement of 
objects based on perception not the features in image.  
Deep learning in SLAM can realize object 
recognition and segmentation, which help the SLAM 
system perceive the surrounding better. Semantics 
SLAM can also do a favor in global optimization, 
loop closure and relocalization. [240]: Traditional 
approaches for simultaneous localization and 
mapping (SLAM) depend on geometric features such 
as points, lines (PL-SLAM [241], StructSLAM 
[242] ), and planes to infer the environment structure. 
The aim of high-precision real-time positioning in 
large-scale scenarios could be achieved by semantics 
SLAM, which teaches robots perceive as humans. 

3.3.4 Software & hardware 

SLAM is not an algorithm but an integrated, 
complex technology [243]. It not only depend on 
software, but also hardware. The future SLAM 
system will focus in the deep combination of 
algorithm and sensors. Based on illustration above, 
the domain specific processors rather than general 
processor, integrated sensors module rather than 
separate sensor like just camera will show great 
potential. The above work make the developer focus 
on the algorithm and accelerate the release of real 
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products. 

4. Lidar and Visual SLAM System 

4.1 Multiple Sensors Calibration 

Camera & IMU: Kalibr [244] is a toolbox that 
solves the following calibration problems: Multiple 
camera calibration, Visual-inertial calibration 
(camera-IMU) and Rolling Shutter Camera 
calibration. Vins-Fusion [143] has online spatial 
calibration  and online temporal calibration.  
MSCKF-VIO [140] also has the calibration for 
camera and IMU. mc-VINS [245] can calibrate the 
extrinsic parameters and time offset between all 
multiple cameras and IMU. Besides, IMU-TK 
[246][247] can calibrate internal parameter of IMU. 
Other work can be seen in [248]. [249] proposes a 
end to end network for monocular VIO, which fuses 
data from camera and IMU. 

Camera & Depth: BAD SLAM [250] proposes 
a calibrated benchmark for this task that uses 
synchronized global shutter RGB and depth cameras. 

Camera & Camera: mcptam [251] is a SLAM 
system using multi-camera. It can also calibrate the 
intrinsic and extrinsic parameters. MultiCol-SLAM 
[252] is a multi-fisheye camera SLAM. Besides, the 
updated version of SVO can also support multiple 
cameras. Other similar work can be seen in ROVIO 
[253]. 

Lidar & IMU: LIO-mapping [254] introduces 
a tightly coupled lidar-IMU fusion method. 
Lidar-Align is a simple method for finding the 
extrinsic calibration between a 3D Lidar and a 6-Dof 
pose sensor. Extrinsic calibration of Lidar can be seen 
in [255][256]. The doctoral thesis [257] illustrate the 
work of Lidar calibration.  

Camera & Lidar: [258] introduces a 
probabilistic monitoring algorithm and a continuous 
calibration optimizer that enable camera-laser 
calibration online, automatically. Lidar-Camera 
[259] proposes a novel pipeline and experimental 
setup to find accurate rigid-body transformation for 
extrinsically calibrating a LiDAR and a camera using 
3D-3D point correspondences. RegNet [260] is the 
first deep convolutional neural network (CNN) to 

infer a 6 degrees of freedom (DOF) extrinsic 
calibration between multi-modal sensors, exemplified 
using a scanning LiDAR and a monocular camera. 
LIMO [261] proposes a depth extraction algorithm 
from LIDAR measurements for camera feature tracks 
and estimating motion. CalibNet [262] is  a 
self-supervised deep network capable of 
automatically estimating the 6-DoF rigid body 
transformation between a 3D LiDAR and a 2D 
camera in real-time. The calibration tool from 
Autoware can calibrate the signal beam Lidar and 
camera. . Other work can be seen as follows but not 
limited to [263-265]. 

Other work like SVIn2 [266] demonstrates an 
underwater SLAM system fusing Sonar, Visual, 
Inertial, and Depth Sensor, which is based on OKVIS.  
[267] proposes a new underwater camera-IMU 
calibration model and [268] detects underwater 
obstacle using semantic image Segmentation. 
WiFi-SLAM [269] demonstrates a novel SLAM 
technology with wireless signal named WiFi. [270] 
uses the mmWave to locate even the NLOS robots 
and [271,272] introduce more technique about 
localization with the aid of wirless signals. 
KO-Fusion [120] fuses visual and wheeled odometer. 
[273] uses a thermal camera with IMU in visually 
degraded environments e.g. darkness. 

4.2 Lidar and Visual Fusion 

Hardware layer: Pandora from HESAI is a 
software and hardware solution integrating 40 beams 
Lidar, five color cameras and recognition algorithm. 
The integrated solution can comfort developer from 
temporal and spatial synchronization. Understanding 
the exist of CONTOUR and STENCIL from 
KAARTA will give you a brainstorming. 

Data layer: Lidar has sparse, high precision 
depth data and camera has dense but low precision 
depth data, which will lead to image-based depth 
upsampling and image-based depth 
inpainting/completion. [274] presents a novel method 
for the challenging problem of depth image 
upsampling. [275] relies only on basic image 
processing operations to perform depth completion of 
sparse Lidar depth data. With deep learning, [276] 
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proposes the use of a single deep regression network 
to learn directly from the RGB-D raw data, and 
explore the impact of number of depth samples. [277] 
considers CNN operating on sparse inputs with an 
application to depth completion from sparse laser 
scan data. DFuseNet [278] proposes a CNN that is 
designed to upsample a series of sparse range 
measurements based on the contextual cues gleaned 
from a high resolution intensity image. Other similar 
work can be seen as follows but not limited to 
[279][280]. LIC-Fusion [281] fuses IMU 
measurements, sparse visual features, and extracted 
LiDAR points. 

Task layer: [282] fuses stereo camera and Lidar 
to perceive. [283] fuses radar, Lidar, and camera to 
detect and classify moving objects. Other traditional 
work can be seen but not limited to [284-286]. [287] 
can augment VO by depth information such as 
provided by RGB-D cameras, or from Lidars 
associated with cameras even if sparsely available. 
V-Loam [288] presents a general framework for 
combining visual odometry and Lidar odometry. The 
online method starts with visual odometry and scan 
matching based Lidar odometry refines the motion 
estimation and point cloud registration 
simultaneously. VL-SLAM [289] is concerned with 
the development of a system that combines an 
accurate laser odometry estimator, with algorithms 
for place recognition using vision for achieving loop 
detection. [290] aims at the tracking part of SLAM 
using an RGB-D camera and 2d low-cost LIDAR to 
finish a robust indoor SLAM by a mode switch and 
data fusion. VIL-SLAM [291] incorporates 
tightly-coupled stereo VIO with Lidar mapping and 
Lidar enhanced visual loop closure. [292] combines 
monocular camera images with laser distance 
measurements to allow visual SLAM without errors 
from increasing scale uncertainty. In deep learning, 
many methods to detect and recognize fusing data 
from camera and Lidar such as PointFusion [293], 
RoarNet [294], AVOD [295], MV3D [26],  
FuseNet [296]. Other similar work can be seen in 
[297]. Besides, [298] exploits both Lidar as well as 
cameras to perform very accurate localization with a  
an end-to-end learnable architecture. [299] fuses 3D 

Lidar and monocular camera. 

4.3 Challenge and Future[300] 

Data Association:  the future of SLAM must 
integrate multi-sensors. But different sensors have 
different data types, time stamps, and coordinate 
system expressions, needed to be processed 
uniformly. Besides, physical model establishment, 
state estimation and optimization between 
multi-sensors should be taken into consideration. 

Integrated Hardware: at present, there is no 
suitable chip and integrated hardware to make 
technology of SLAM more easily to be a product. On 
the other hand,  if the accuracy of a sensor degrades 
due to malfunctioning, off-nominal conditions, or 
aging, the quality of the sensor measurements (e.g., 
noise, bias) does not match the noise model. The 
robustness and integration of hardware should be 
followed. Sensors in front-end should have the 
capability to process data and the evolution from 
hardware layer to algorithm layer, then to function 
layer to SDK should be innovated to application.  

Crowdsourcing: decentralized visual SLAM is 
a powerful tool for multi-robot applications in 
environments where absolute positioning systems are 
not available [301]. Co-optimization visual 
multi-robot SLAM need decentralized data and 
optimization, which is called crowdsourcing. The 
privacy in the process of decentralized data should 
come into attention. The technology of differential 
privacy [302][303] maybe do a favor.  

High Definition Map: High Definition Map is 
vital for robots. But which type of map is the best for 
robots? Could dense map or sparse map navigate, 
positioning and path plan? A related open question 
for long-term mapping is how often to update the 
information contained in the map and how to decide 
when this information becomes outdated and can be 
discarded. 

Adaptability, Robustness, Scalability:  as we 
know, no SLAM system now can cover all scenarios. 
Most of it requires extensive parameter tuning in 
order to work correctly for a given scenario. To make 
robots perceive as humans, appearance-based instead 
of feature-based method is preferred, which will help 
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close loops integrated with semantic information 
between day and night sequences or between 
different seasons.  

Ability against risk and constraints: Perfect 
SLAM system should be failure-safe and 
failure-aware. It's not the question about 
relocalization or loop closure here. SLAM system 
must have ability to response to risk or failure. In the 
same time, an ideal SLAM solution should be able 
run on different platforms no matter the 
computational constraints of platforms. How to 
balance the accuracy, robustness and the limited 
resource is a challenging problem [137].  

Application: the technology of SLAM has a 
wide application such as: large-scale positioning, 
navigation and 3D or semantic map construction, 
environment recognition and understanding,  ground 
robotics, UAV, VR/AR/MR, AGV(Automatic Guided 
Vehicle), automatic drive, virtual interior decorator, 
virtual fitting room, immersive online game, 
earthquake relief, video segmentation and editing. 

Open question: Will end-to-end learning 
dominate SLAM? 

5. An Envision in 6G Wireless 

Nowadays, 5G has been developed widely to 
communicate more quickly and massively [272]. But 
for robots and autonomous driving cars, the 
technology of SLAM need greater data rates and less 
latency that 5G can't afford. Unlike 100 Gbps of data 
rates for 5G, 6G can provide greater data rates due to 
the frequency in 100 GHz to 3 THz (terahertz).  

THz is the last unexplored band in the radio 
frequency spectrum. Less than the THz, the radio 
bands are called microwave. The radio frequency of 
optical bands , which are regarded as visible light 
communications (VLC), are more than THz [304]. 
The 6G technology will need no supports such as 
multiple-input multiple-output (MIMO) in 5G 
represented as mmWave communications. As for the 
difference with VLC, 6G with the THz 
communications will not affected by the light 
changes and NLOS. 

 

5.1 Lidar and Visual Fusion 

For the advance of wireless communication 
system, industry and academic are urged to pay 
attention to the research of 6G. Next, we will 
introduce some advantages of 6G [305].   

Low Latency: Less than 1 msec end-to-end 
latency;  

Data rate: High data rates up to 1 Tbps; 
Ultra-high bandwidth: Very broad frequency 

bands; 
Energy save: Very high energy efficiency;  
Ubiquitous connection: Enable to connect 

global network including the massive intelligent 
things and the emergence of smart surface and 
environment such as walls, roads even the whole 
buildings.  

Intelligent network: AI and RISs make it 
smarter and beyond classical big data analytics and 
edge computation. 

Ubiquitous connection: Enable to connect 
everything. 

6G is supposed as the platforms to serve for 
communication, computation, and storage resources 
with the aid of AI [306]. 

5.2 6G in Simultaneous Localization and Mapping 

SLAM can be divided into radio-based (such as 
satellite positioning, cellular and WiFi) and 
sensor-based (such as Lidar, IMU and camera) [307]. 
With the wireless technology, the technology of 
SLAM can be achieved by constructing the map of 
environment and projecting the angle and the time of 
arrival to estimate the locations from the users. The 
conventional mmWave method utilizing  
AoA-based positioning or a combination of path loss 
and AoA, and RSSI [271]. With the aid of 
Reconfigurable intelligent surfaces (RISs),  
localization and mapping can improve accuracy and 
extended physical coverage. 

It's apparent that 6G with THz will create 
centimeter level accuracy even in NLOS environment 
and 6G will provide a network to sense and 
localization rather than a independent source [308] 
for SLAM. Cause the greater data rates, the massive 
computations can be conducted in remote device or 
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machine, which relief the pressure of computer 
power in robots and autonomous driving cars.  

In the future, THz will enable the robots and 
autonomous driving cars with new capability of 
sensing the gas, air quality, health detection, body 
scanning and so on. Plus, with the aid of THz, 
computer vision will be augmented to see the NLOS 
views, which will play a vital role in rescue and 
sensing. In the basic, the accuracy of positioning will 
be improved to sub-centimeter level and the map of 
surrounding environment will be constructed as 3D 
maps without any calibration and prior knowledge, 
which is hard to realized before. Moreover, 6G and 
AI will achieve excellent successes again in future 
digital society with the full connectivity demands. 
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 [55] O. Ka ḧler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. 
H. S Torr, and D. W. Murray. Very High Frame Rate 
Volumetric Integration of Depth Images on Mobile 



225 
 

Device. IEEE Transactions on Visualization and 
Computer Graphics (Proceedings International 
Symposium on Mixed and Augmented Reality 2015, 
22(11), 2015.  
[56] Simon Lynen, Torsten Sattler, Michael Bosse, Joel 
A Hesch, Marc Pollefeys, and Roland Siegwart. Get out 
of my lab: Large-scale, real- time visual-inertial 
localization. In Robotics: Science and Systems, volume 
1, 2015.  
[57] Xiang Gao, Tao Zhang, Yi Liu, and Qinrui Yan. 14 
Lectures on Visual SLAM: From Theory to Practice. 
Publishing House of Electronics Industry, 2017.  
[58] Takafumi Taketomi, Hideaki Uchiyama, and Sei 
Ikeda. Visual slam algorithms: A survey from 2010 to 
2016. IPSJ Transactions on Computer Vision and 
Applications, 9(1):16, 2017.  
[59] B Srinivasa Reddy and Biswanath N Chatterji. An 
fft-based technique for translation, rotation, and 
scale-invariant image registration. IEEE transactions on 
image processing, 5(8):1266–1271, 1996.  
[60] Tim Kazik and Ali Haydar Go ̈ktog ̆an. Visual 
odometry based on the fourier-mellin transform for a 
rover using a monocular ground-facing camera. In 2011 
IEEE International Conference on Mechatronics, pages 
469–474. IEEE, 2011.  
[61] Merwan Birem, Richard Kleihorst, and Norddin 
El-Ghouti. Visual odometry based on the fourier 
transform using a monocular ground- facing camera. 
Journal of Real-Time Image Processing, 14(3):637–646, 
2018.  
[62] Liu Haomin, Zhang Guofeng, and Bao hujun. A 
survy of monocular simultaneous localization and 
mapping. Journal of Computer-Aided Design & 
Computer Graphics, 28(6):855–868, 2016.  
[63]GuillermoGallego,TobiDelbruck,GarrickOrchard,C
hiaraBartolozzi, and Davide Scaramuzza. Event-based 
vision: A survey. 2019.  
[64] Patrick Lichtsteiner, Christoph Posch, and Tobi 
Delbruck. A 128x128 120db 15us latency asynchronous 
temporal contrast vision sensor. IEEE journal of 
solid-state circuits, 43(2):566–576, 2008.  
[65] Bongki Son, Yunjae Suh, Sungho Kim, Heejae 
Jung, Jun-Seok Kim, Changwoo Shin, Keunju Park, 
Kyoobin Lee, Jinman Park, Jooyeon Woo, et al. 4.1 a 
640× 480 dynamic vision sensor with a 9μm pixel and 

300meps address-event representation. In 2017 IEEE 
International Solid-State Circuits Conference (ISSCC), 
pages 66–67. IEEE, 2017.  
[66] Christoph Posch, Daniel Matolin, Rainer 
Wohlgenannt, Thomas Maier, and Martin Litzenberger. 
A microbolometer asynchronous dynamic vision sensor 
for lwir. IEEE Sensors Journal, 9(6):654–664, 2009.  
[67] Michael Hofstatter, Peter Scho n̈, and Christoph 
Posch. A sparc- compatible general purpose 
address-event processor with 20-bit l0ns- resolution 
asynchronous sensor data interface in 0.18 μm cmos. In 
Proceedings of 2010 IEEE International Symposium on 
Circuits and Systems, pages 4229–4232. IEEE, 2010.  
[68] Christoph Posch, Michael Hofstatter, Daniel 
Matolin, Guy Vanstraelen, Peter Schon, Nikolaus 
Donath, and Martin Litzenberger. A dual-line optical 
transient sensor with on-chip precision time-stamp 
generation. In 2007 IEEE International Solid-State 
Circuits Conference. Digest of Technical Papers, pages 
500–618. IEEE, 2007.  
[69] Christian Brandli, Raphael Berner, Minhao Yang, 
Shih-Chii Liu, and Tobi Delbruck. A 240× 180 130 db 3 
μs latency global shutter spatiotemporal vision sensor. 
IEEE Journal of Solid-State Circuits, 49(10):2333–2341, 
2014.  
[70] Christoph Posch, Daniel Matolin, and Rainer 
Wohlgenannt. A qvga 143 db dynamic range frame-free 
pwm image sensor with lossless pixel-level video 
compression and time-domain cds. IEEE Journal of 
Solid-State Circuits, 46(1):259–275, 2010.  
[71] Andrew J Davison, Ian D Reid, Nicholas D Molton, 
and Olivier Stasse. Monoslam: Real-time single camera 
slam. IEEE Transactions on Pattern Analysis & 
Machine Intelligence, (6):1052–1067, 2007.  
[72] Georg Klein and David Murray. Parallel tracking 
and mapping for small ar workspaces. In Proceedings of 
the 2007 6th IEEE and ACM International Symposium 
on Mixed and Augmented Reality, pages 1– 10. IEEE 
Computer Society, 2007.  
[73]  Georg Klein and David Murray. Improving the 
agility of keyframe- based slam. In European 
Conference on Computer Vision, pages 802– 815. 
Springer, 2008.  



226 
 

[74]  Ethan Rublee, Vincent Rabaud, Kurt Konolige, 
and Gary R Bradski. Orb: An efficient alternative to sift 
or surf. In ICCV, volume 11, page 2. Citeseer, 2011.  
[75]  Raul Mur-Artal and Juan D Tardo ́s. Orb-slam2: 
An open-source slam system for monocular, stereo, and 
rgb-d cameras. IEEE Transactions on Robotics, 
33(5):1255–1262, 2017.  
[76]  Yahui Wang, Shaojun Cai, Shi-Jie Li, Yun Liu, 
Yangyan Guo, Tao Li, and Ming-Ming Cheng. 
Cubemapslam: A piecewise-pinhole monocular fisheye 
slam system. In Asian Conference on Computer Vision, 
pages 34–49. Springer, 2018.  
[77]  Rau  ́ l Mur-Artal and Juan D Tardo ́ s. 
Visual-inertial monocular slam with map reuse. IEEE 
Robotics and Automation Letters, 2(2):796– 803, 2017.  
[78]  Christian Forster, Luca Carlone, Frank Dellaert, 
and Davide Scara- muzza. On-manifold preintegration 
for real-time visual–inertial odom- etry. IEEE 
Transactions on Robotics, 33(1):1–21, 2016.  
[79]  D.Schlegel,M.Colosi,andG.Grisetti.ProSLAM:Gr
aphSLAMfrom a Programmer’s Perspective. In 2018 
IEEE International Conference on Robotics and 
Automation (ICRA), pages 1–9, 2018.  
[80]  Guofeng Zhang, Haomin Liu, Zilong Dong, Jiaya 
Jia, Tien-Tsin Wong, and Hujun Bao. Efficient 
non-consecutive feature tracking for robust 
structure-from-motion. IEEE Transactions on Image 
Processing, 25(12):5957–5970, 2016.  
[81]  Shinya Sumikura, Mikiya Shibuya, and Ken 
Sakurada. Openvslam: a versatile visual slam 
framework, 2019.  
[82]  Bernd Pfrommer and Kostas Daniilidis. Tagslam: 
Robust slam with fiducial markers. arXiv preprint 
arXiv:1910.00679, 2019.  
[83]  Rafael Munoz-Salinas and Rafael 
Medina-Carnicer. Ucoslam: Simul- taneous localization 
and mapping by fusion of keypoints and squared planar 
markers. arXiv preprint arXiv:1902.03729, 2019.  
[84]  Jakob Engel, Thomas Scho p̈s, and Daniel 
Cremers. Lsd-slam: Large- scale direct monocular slam. 
In European conference on computer vision, pages 
834–849. Springer, 2014.  
[85]  Jakob Engel, Jo  ̈ rg Stu  ̈ ckler, and Daniel 
Cremers. Large-scale direct slam with stereo cameras. 
In 2015 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), pages 
1935–1942. IEEE, 2015.  
[86]  David Caruso, Jakob Engel, and Daniel Cremers. 
Large-scale direct slam for omnidirectional cameras. In 
2015 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), pages 141–148. IEEE, 
2015.  
[87]  Jianfeng Li, Xiaowei Wang, and Shigang Li. 
Spherical-model-based slam on full-view images for 
indoor environments. Applied Sciences, 8(11):2268, 
2018.  
[88]  Christian Forster, Zichao Zhang, Michael Gassner, 
Manuel Werl- berger, and Davide Scaramuzza. Svo: 
Semidirect visual odometry for monocular and 
multicamera systems. IEEE Transactions on Robotics, 
33(2):249–265, 2016.  
[89]  ShingYanLoo,AliJahaniAmiri,SyamsiahMashoho
r,SaiHongTang, and Hong Zhang. Cnn-svo: Improving 
the mapping in semi-direct visual odometry using 
single-image depth prediction. arXiv preprint 
arXiv:1810.01011, 2018.  
[90]  Jakob Engel, Vladlen Koltun, and Daniel Cremers. 
Direct sparse odometry. CoRR, abs/1607.02565, 2016.  
[91]  Jakob Engel, Vladlen Koltun, and Daniel Cremers. 
Direct sparse odom- etry. IEEE transactions on pattern 
analysis and machine intelligence, 40(3):611–625, 
2017.  
[92]  Henri Rebecq, Timo Horstscha f̈er, Guillermo 
Gallego, and Davide Scaramuzza. Evo: A geometric 
approach to event-based 6-dof parallel tracking and 
mapping in real time. IEEE Robotics and Automation 
Letters, 2(2):593–600, 2016.  
[93]  Yi Zhou, Guillermo Gallego, Henri Rebecq, 
Laurent Kneip, Hongdong Li, and Davide Scaramuzza. 
Semi-dense 3d reconstruction with a stereo event 
camera. In Proceedings of the European Conference on 
Computer Vision (ECCV), pages 235–251, 2018.  
[94]  David Weikersdorfer, Raoul Hoffmann, and Jo r̈g 
Conradt. Simulta- neous localization and mapping for 
event-based vision systems. In International Conference 
on Computer Vision Systems, pages 133–142. Springer, 
2013.  
[95]  David Weikersdorfer, David B Adrian, Daniel 
Cremers, and Jo r̈g Conradt. Event-based 3d slam with a 
depth-augmented dynamic vision sensor. In 2014 IEEE 



227 
 

International Conference on Robotics and Automation 
(ICRA), pages 359–364. IEEE, 2014. 
[96] Javier Civera, Andrew J Davison, and JM Martinez 
Montiel. Inverse depth parametrization for monocular 
slam. IEEE transactions on robotics, 24(5):932–945, 
2008. 
 [97] Richard A Newcombe, Steven J Lovegrove, and 
Andrew J Davison. Dtam: Dense tracking and mapping 
in real-time. In 2011 international conference on 
computer vision, pages 2320–2327. IEEE, 2011. 
[98] W Nicholas Greene, Kyel Ok, Peter Lommel, and 
Nicholas Roy. Multi-level mapping: Real-time dense 
monocular slam. In 2016 IEEE International 
Conference on Robotics and Automation (ICRA), pages 
833–840. IEEE, 2016. 
 [99] Richard A Newcombe, Shahram Izadi, Otmar 
Hilliges, David Molyneaux, David Kim, Andrew J 
Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, 
and Andrew W Fitzgibbon. Kinectfusion: Real- time 
dense surface mapping and tracking. In ISMAR, volume 
11, pages 127–136, 2011.  
[100]ShahramIzadi,DavidKim,OtmarHilliges,DavidMol
yneaux,Richard Newcombe, Pushmeet Kohli, Jamie 
Shotton, Steve Hodges, Dustin Freeman, Andrew 
Davison, et al. Kinectfusion: real-time 3d recon- 
struction and interaction using a moving depth camera. 
In Proceedings of the 24th annual ACM symposium on 
User interface software and technology, pages 559–568. 
ACM, 2011.  
[101] Frank Steinbru ̈ cker, Ju  ̈ rgen Sturm, and Daniel 
Cremers. Real-time visual odometry from dense rgb-d 
images. In 2011 IEEE International Conference on 
Computer Vision Workshops (ICCV Workshops), pages 
719–722. IEEE, 2011.  
[102] Christian Kerl, Ju r̈gen Sturm, and Daniel 
Cremers. Robust odometry estimation for rgb-d cameras. 
In 2013 IEEE International Conference on Robotics and 
Automation, pages 3748–3754. IEEE, 2013.  
[103] Christian Kerl, Ju r̈gen Sturm, and Daniel 
Cremers. Dense visual slam for rgb-d cameras. In 2013 
IEEE/RSJ International Conference on Intelligent 
Robots and Systems, pages 2100–2106. IEEE, 2013.  
[104] Felix Endres, Ju ̈ rgen Hess, Ju ̈ rgen Sturm, 
Daniel Cremers, and Wolfram Burgard. 3-d mapping 

with an rgb-d camera. IEEE transactions on robotics, 
30(1):177–187, 2013.  
[105] Thomas Whelan, Michael Kaess, Maurice Fallon, 
Hordur Johannsson, John J Leonard, and John 
McDonald. Kintinuous: Spatially extended kinectfusion. 
2012.  
[106] Thomas Whelan, Michael Kaess, Hordur 
Johannsson, Maurice Fallon, John J Leonard, and John 
McDonald. Real-time large-scale dense rgb- d slam with 
volumetric fusion. The International Journal of 
Robotics Research, 34(4-5):598–626, 2015.  
[107] Thomas Whelan, Hordur Johannsson, Michael 
Kaess, John J. Leonard, and John Mcdonald. Robust 
real-time visual odometry for dense rgb-d mapping. In 
IEEE International Conference on Robotics and 
Automation, 2011.  
[108] Mathieu Labbe and Franc ̧ois Michaud. Online 
global loop closure detection for large-scale 
multi-session graph-based slam. In 2014 IEEE/RSJ 
International Conference on Intelligent Robots and 
Systems, pages 2661–2666. IEEE, 2014.  
[109] MM Labbe ́ and F Michaud. Appearance-based 
loop closure detection in real-time for large-scale and 
long-term operation. IEEE Transactions on Robotics, 
pages 734–745.  
[110] Mathieu Labbe  ́and Franc o̧is Michaud. Memory 
management for real- time appearance-based loop 
closure detection. In 2011 IEEE/RSJ International 
Conference on Intelligent Robots and Systems, pages 
1271–1276. IEEE, 2011.  
[111] Mathieu Labbe ́ and Franc o̧is Michaud. Rtab-map 
as an open-source lidar and visual simultaneous 
localization and mapping library for large-scale and 
long-term online operation. Journal of Field Robotics, 
36(2):416–446, 2019.  
[112] Richard A Newcombe, Dieter Fox, and Steven M 
Seitz. Dynamicfu- sion: Reconstruction and tracking of 
non-rigid scenes in real-time. In Proceedings of the 
IEEE conference on computer vision and pattern 
recognition, pages 343–352, 2015.  
[113] Matthias Innmann, Michael Zollho ̈fer, Matthias 
Nießner, Christian Theobalt, and Marc Stamminger. 
Volumedeform: Real-time volumetric non-rigid 
reconstruction. In European Conference on Computer 
Vision, pages 362–379. Springer, 2016.  



228 
 

[114] Mingsong Dou, Sameh Khamis, Yury Degtyarev, 
Philip Davidson, Sean Ryan Fanello, Adarsh Kowdle, 
Sergio Orts Escolano, Christoph Rhemann, David Kim, 
Jonathan Taylor, et al. Fusion4d: Real-time performance 
capture of challenging scenes. ACM Transactions on 
Graphics (TOG), 35(4):114, 2016.   
[115] Thomas Whelan, Stefan Leutenegger, R 
Salas-Moreno, Ben Glocker, and Andrew Davison. 
Elasticfusion: Dense slam without a pose graph. 
Robotics: Science and Systems, 2015. 
[116] Thomas Whelan, Renato F Salas-Moreno, Ben 
Glocker, Andrew J Davison, and Stefan Leutenegger. 
Elasticfusion: Real-time dense slam and light source 
estimation. The International Journal of Robotics 
Research, 35(14):1697–1716, 2016.  
[117] V A Prisacariu, O Ka ḧler, S Golodetz, M 
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Abstract 

In recent years, the increasing frequency of 
natural disasters caused by various types of severe 
weather events (SWEs) has resulted in more and more 
damage and losses to properties and livelihoods. 
These phenomena highlight a pressing need to 
understand the intrinsic nature of these events and 
develop reliable and robust methods for the 
nowcasting and very short-range forecasting (VSRF) 
of SWEs, thus to prevent and mitigate the influences 
brought by all kinds of natural disasters. Facing with 
the high demand of the VSRF of SWEs, it is necessary 
to obtain and use various kinds meteorological data 
with high accuracy and high spatiotemporal resolution 
in an effective way. Atmospheric water vapor (WV), 
which is recognized as an essential climate variable, 
greatly affects the atmosphere stability, the 
hydrological and energy cycles, and the formation of 
cloud and rainfall. As one of the most active 
components in the atmosphere, the evolution of WV 
has significant implications for determining the 
intensity, time and extent of potential SWEs. 
Therefore, to refine the service for the monitoring and 
detection of SWEs, it is of great importance to obtain 
the amount of WV contained in the atmosphere and 
capture its movements. However, the rapid change and 
dynamic characteristics of WV make it an extremely 

difficult task to obtain its accurate and timely 
spatiotemporal distributions in the troposphere using 
traditional observing techniques such as radiosonde, 
water vapor radiometers, and etc. With the rapid 
deployment and development for nearly four decades, 
the Global Navigation Satellite Systems (GNSS) has 
been widely used in the remote sensing of atmospheric 
variables, e.g., zenith total delay (ZTD) and precipitable 
water vapor (PWV). This is mainly due to the high 
accuracy, high spatiotemporal resolution and all-weather 
capability of GNSS observations. Hence, the availability 
of atmospheric information retrieved from GNSS has 
opened new avenues and new possibilities for GNSS 
meteorological applications of the detection of SWEs. 

This dissertation focuses on the retrieval of 
GNSS-derived atmospheric products with high accuracy 
and high spatiotempeoral resolution, and then apply 
them to the nowcasting and VSRF of SWEs. The 
research include: the retrieval of atmospheric products 
from ground-based GNSS radio signals and their 
accuracy evaluation, the feature analysis of atmospheric 
variables and their responses to SWEs, short-term 
prediction of SWEs using threshold-based models, 
anomaly-based models and back propagation neural 
network (BPNN) algorithm. The detailed research 
contents and major contributions are outlined as follows: 
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(1) The dissertation firstly illustrates the 
principles of atmospheric information estimation from 
ground-based GNSS, then clearly describes the 
theoretical algorithms, empirical models and various 
kinds of strategies about the whole processing 
procedure from GNSS signals to atmospheric delay, 
ZTD and finally to PWV. The Hong Kong region was 
selected as the experimental area, the ZTD series over 
the 10-year study period 2010-2019 at the 15 GNSS 
stations in the region were estimated using the Precise 
Point Positioning (PPP) technique based on the 
RTKLIB software with the near real-time (NRT) 
strategy. Then, with the incorporation of 
meteorological data and empirical models, PWV 
estimates over the same period can be obtained. 
Finally, the ZTDs provided by the International GNSS 
service (IGS) and the PWVs estimated from the 
sounding profiles were adopted to assess the accuracy 
of those products derived from GNSS observations. 

(2) To more comprehensively take the 
atmospheric environment conditions into account, this 
study not only obtained the time series of ZTD and 
PWV over the study period, but also collected the 
temperature, pressure, relative humidity and the actual 
records of SWEs within the experimental area. In 
addition, the two variables of day of year (DOY) and 
hour of day (HOD), which represent the seasonal and 
diurnal variations of time-varying variables were also 
considered. Then, to investigate the correlation 
between each two of these variables, the Pearson 
correlation coefficient was adopted to conduct the 
cross-correlation analysis. Furthermore, this study also 
used the principal component analysis (PCA) method 
to figure out each variable’s responses to the 
occurrence of SWEs and test their contributions and 
effectiveness in the detection of SWEs, which can be 
recognized as reference for selecting appropriate 
predictors in model development. 

(3) In this study, severe rainfall event was chosen 
as an example of SWEs, thus the synoptic process for 
the formation of severe rainfall event was described in 
detail. Due to the threshold-based model is easy to 
operate and has simple principles, hence this study 

adopted this type of model to develop the 5-factor 
PWV-based model and the 7-factor ZTD-based model. 
The two types of new models used five and seven kinds 
of derivatives from PWV and ZTD series, respectively. It 
is noted that this study is the first to consider the 
predictors obtained from the descending trends in the 
PWV and ZTD series to detect the onset of severe 
rainfall events. The experimental results of the two types 
of models suggest that it is promising to use these model 
to obtain better prediction results and they can be used as 
effective complements to the operational models. 

(4) Analyzing the anomaly series of a variable in 
response to a weather event is a common practice in the 
meteorological community, however, for variables 
derived from GNSS observations, this type of analysis 
has not been reported in the existing literature, let alone 
for the application of heavy rainfall detection. Hence, 
this study is the first to analyze the anomaly and 
cumulative anomaly time series of GNSS-derived 
atmospheric products to detect SWEs, and two kinds of 
new models using anomaly and cumulative anomaly 
series of GNSS-derived products were proposed. 
Compared with the threshold-based models, there is no 
need for those anomaly-based models to select a specific 
threshold value, thus the efficiency for model 
development can be greatly improved. However, due to 
the rapid temporal variation in the GNSS-derived 
tropospheric variables, their anomaly time series may 
contain a larger number of high-frequency noisy signals; 
hence, using the anomaly series of rapidly changing 
variables for severe rainfall detection is likely to result in 
poor performance. By using the cumulative anomaly 
series of these variables to detect severe precipitation 
events can effectively overcome this problem because 
those large noises can be effectively filtered out and the 
integrity of the information contained in the raw time 
series can be also ensured. In addition, the advantage of 
using cumulative anomaly series also lies in that the 
formation of severe rainfall events is a timely response 
to the accumulated effects of weather parameters over a 
long period rather than instantaneous features, hence the 
prediction performance resulted from using cumulative 
anomaly time series can be further improved in 
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comparison to that from using the anomaly series. 

(5) Based on all the previous studies and 
discussions, this study also proposed a new method, 
which is a hybrid of threshold-based model and 
anomaly-based model, for the VSRF of severe rainfall 
events. The calculation of the anomaly series of a 
predictor is to minimize the data range for optimizing 
the threshold selection process; then, with the 
obtained anomaly series of a predictor, the improved 
percentile method was adopted to calculate its specific 
threshold. In addition, those state-of-the-art techniques 
proposed for each step contained in the development 
of a robust detecting model was also utilized in the 
new method. Consequently, it can be concluded from 
the experimental results that the anomaly-based 
percentile thresholds of predictors derived from the 
PWV/ZTD time series have the potential to be applied 
to the severe rainfall detection with a reasonably good 
accuracy. 

(6) It can be clearly seen that the above models 
did not take the meteorological variables, e.g., 

temperature, pressure, and their impacts on the formation 
of the onset of SWEs into consideration. Therefore, this 
study also proposed a new model based on the improved 
BPNN algorithm, which has the ability of self-learning, 
nonlinear mapping and fast convergence. The predictors 
contained in the new model were PWV, ZTD, 
temperature, pressure, relative humidity, DOY and HOD. 
Prior to the model training phase, several factors that 
affecting the model’s performance including the 
selection of hyperparameters, the length of training 
samples, and its time period were investigated, thus a 
principle for model development was formulated. While 
after the training and validation phases of the modelling 
were completed, the weight maps of the well-trained 
model were further investigated for the knowledge of the 
interior structure of the technique and for the 
determination of the most active variables. 

Keywords: Global Navigation Satellite System (GNSS); 
GNSS meteorology (GNSS/MET); zenith total delay 
(ZTD); precipitable water vapor (PWV); very 
short-range forecasting (VSRF); severe weather events 
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Abstract 

Smartphones are integrated with consumer-grade 
GNSS chips and inertial sensors, providing an effective 
research platform for tapping the potential of 
miniaturized, low-cost sensors for high-precision 
positioning. However, for the GNSS observations of 
smartphones, phase biases generated by the low-cost 
GNSS chips and severe multipath errors introduced by 
the embedded antenna, resulting in unresolved carrier 
phase ambiguity.  

To solve these problems, this dissertation conducts 
an in-depth study on the key technologies of GNSS 
ambiguity resolution and other high-precision 
positioning for smartphones. The error characteristics 
of smartphone GNSS observations were analyzed, the 
carrier phase bias estimation method and multipath 
mitigation method were proposed, and the smartphone 
GNSS centimeter-level ambiguity-fixed solutions were 
obtained. Based on this, we further explored methods 
such as synchronous integration of smartphone GNSS 
with the accelerometer, and obtained higher precision 
and higher resolution positioning results. As a result, 
the feasibility of centimeter-level high-precision 
positioning using consumer-grade GNSS chips, 
antennas and inertial sensors embedded in smartphones 
was demonstrated. Meanwhile, these works can provide 
theoretical methods and technical support for high-
precision positioning using miniaturized, low-cost 

GNSS and inertial sensors.  

Chapter 1 provides an introduction to this thesis. 

Chapter 2 presents the basic GNSS positioning 
theory such as functional model, stochastic model, 
estimator and ambiguity resolution methods. 

In Chapter 3, the quality and error characteristics of 
recent smartphone multi-GNSS observations are 
systematically analyzed. Some error characteristics that 
distinguish survey receivers, such as low signal 
strength, uneven gain, a weak correlation between 
signal strength and elevation, frequent cycle slips, and 
high observation noise, have been found. In addition, 
duty-cycle, anomalous “jagged” distribution phase 
error, clock misalignment, and inconsistent 
pseudorange and phase clock issues in smartphone 
GNSS observations have also been identified. In 
addition, the theoretical parameters of the noise versus 
C/N0 model are provided for different smartphones 
GNSS chipsets. 

The next two chapters, Chapters 4 and 5, form two 
important parts of this thesis. The first one deals with 
the phase bias problem generated by the smartphone 
GNSS chip in Chapter 4. The second one deals with the 
severe multipath error issue introduced by the 
embedded antenna of the smartphone. 

In Chapter 4, a double-difference carrier phase bias 
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and inter-frequency phase bias (IFB) rate extraction 
method based on the zero/short baseline is proposed. 
By using this method, the phase biases and the phase 
IFB rate inconsistent issues of smartphone GNSS 
observations are found. To solve this problem, a gain 
filtering-based online phase biases correction method is 
proposed, and the dual-frequency and full-constellation 
GNSS ambiguity resolution for the smartphone is 
implemented. 

Two multipath mitigation methods are proposed in 
Chapter 5. One method is based on the stochastic 
model compensation of double-difference code-minus-
carrier combined observations, and the other method 
combines stochastic model compensation and 
functional model correction. Based on these methods, 
dual-frequency and multi-system GNSS ambiguity 

resolution is implemented on the smartphone using its 
embedded GNSS antenna.  

Chapter 6 conducts an application study of high-
precision broadband positioning based on consumer-
grade GNSS chips and accelerometers using 
smartphones as the research platform. A method to 
synchronize and integrate Android GNSS with 
accelerometer data and a single-receiver 
GNSS/acceleration tight integrated positioning method 
based on inter-satellite difference are successively 
proposed. Experimental results show that smartphones 
using these methods can capture broadband vibrations 
at centimeter resolution.  

Chapter 7 summarizes the thesis and provides an 
outlook for future research. 
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Abstract

In recent years, the increasing frequency of 
natural disasters caused by various types of severe 
weather events (SWEs) has resulted in more and 
more damage and losses to properties and livelihoods. 
These phenomena highlight a pressing need to 
understand the intrinsic nature of these events and 
develop reliable and robust methods for the 
nowcasting and very short-range forecasting (VSRF) 
of SWEs, thus to prevent and mitigate the influences 
brought by all kinds of natural disasters. Facing with 
the high demand of the VSRF of SWEs, it is 
necessary to obtain and use various kinds of 
meteorological data with high accuracy and high 
spatiotemporal resolution in an effective way. 
Atmospheric water vapor (WV), which is recognized 
as an essential climate variable, greatly affects the 
atmosphere stability, the hydrological and energy 
cycles, and the formation of cloud and rainfall. As 
one of the most active components in the atmosphere, 
the evolution of WV has significant implications for 
determining the intensity, time and extent of potential 
SWEs. Therefore, to refine the service for the 
monitoring and detection of SWEs, it is of great 
importance to obtain the amount of WV contained in 
the atmosphere and capture its movements. However, 

the rapid change and dynamic characteristics of WV 
make it an extremely difficult task to obtain its 
accurate and timely spatiotemporal distributions in 
the troposphere using traditional observing 
techniques such as radiosonde, water vapor 
radiometers, and etc. With the rapid deployment and 
development for nearly four decades, the Global 
Navigation Satellite Systems (GNSS) has been 
widely used in the remote sensing of atmospheric 
variables, e.g., zenith total delay (ZTD) and 
precipitable water vapor (PWV). This is mainly due 
to the high accuracy, high spatiotemporal resolution 
and all-weather capability of GNSS observations. 
Hence, the availability of atmospheric information 
retrieved from GNSS has opened new avenues and 
new possibilities for GNSS meteorological 
applications of the detection of SWEs 

This dissertation focuses on the retrieval of 
GNSS-derived atmospheric products with high 
accuracy and high spatiotemporal resolution, and 
then apply them to the nowcasting and VSRF of 
SWEs. The research include: the retrieval of 
atmospheric products from ground-based GNSS radio 
signals and their accuracy evaluation, the feature 
analysis of atmospheric variables and their responses 
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to SWEs, short-term prediction of SWEs using 
threshold-based models, anomaly-based models and 
back propagation neural network (BPNN) algorithm. 
The detailed research contents and major 
contributions are outlined as follows: 

(1) The dissertation firstly illustrates the 
principles of atmospheric information estimation 
from ground-based GNSS, then clearly describes the 
theoretical algorithms, empirical models and various 
kinds of strategies about the whole processing 
procedure from GNSS signals to atmospheric delay, 
ZTD and finally to PWV. The Hong Kong region was 
selected as the experimental area, the ZTD series 
over the 10-year study period 2010-2019 at the 15 
GNSS stations in the region were estimated using the 
Precise Point Positioning (PPP) technique based on 
the RTKLIB software with the near real-time (NRT) 
strategy. Then, with the incorporation of 
meteorological data and empirical models, PWV 
estimates over the same period can be obtained. 
Finally, the ZTDs provided by the International 
GNSS service (IGS) and the PWVs estimated from 
the sounding profiles were adopted to assess the 
accuracy of those products derived from GNSS 
observations. 

(2) To more comprehensively take the 
atmospheric environment conditions into account, 
this study not only obtained the time series of ZTD 
and PWV over the study period, but also collected the 
temperature, pressure, relative humidity and the 
actual records of SWEs within the experimental area. 
In addition, the two variables of day of year (DOY) 
and hour of day (HOD), which represent the seasonal 
and diurnal variations of time-varying variables were 
also considered. Then, to investigate the correlation 
between each two of these variables, the Pearson 
correlation coefficient was adopted to conduct the 
cross-correlation analysis. Furthermore, this study 
also used the principal component analysis (PCA) 
method to figure out each variable’s responses to the 
occurrence of SWEs and test their contributions and 
effectiveness in the detection of SWEs, which can be 
recognized as reference for selecting appropriate 
predictors in model development. 

(3) In this study, severe rainfall event was chosen 

as an example of SWEs, thus the synoptic process for 
the formation of severe rainfall event was described 
in detail. Due to the threshold-based model is easy to 
operate and has simple principles, hence this study 
adopted this type of model to develop the 5-factor 
PWV-based model and the 7-factor ZTD-based 
model. The two types of new models used five and 
seven kinds of derivatives from PWV and ZTD series, 
respectively. It is noted that this study is the first to 
consider the predictors obtained from the descending 
trends in the PWV and ZTD series to detect the onset 
of severe rainfall events. The experimental results of 
the two types of models suggest that it is promising 
to use these model to obtain better prediction results 
and they can be used as effective complements to the 
operational models. 

(4) Analyzing the anomaly series of a variable in 
response to a weather event is a common practice in 
the meteorological community, however, for 
variables derived from GNSS observations, this type 
of analysis has not been reported in the existing 
literature, let alone for the application of heavy 
rainfall detection. Hence, this study is the first to 
analyze the anomaly and cumulative anomaly time 
series of GNSS-derived atmospheric products to 
detect SWEs, and two kinds of new models using 
anomaly and cumulative anomaly series of 
GNSS-derived products were proposed. Compared 
with the threshold-based models, there is no need for 
those anomaly-based models to select a specific 
threshold value, thus the efficiency for model 
development can be greatly improved. However, due 
to the rapid temporal variation in the GNSS-derived 
tropospheric variables, their anomaly time series may 
contain a larger number of high-frequency noisy 
signals; hence, using the anomaly series of rapidly 
changing variables for severe rainfall detection is 
likely to result in poor performance. By using the 
cumulative anomaly series of these variables to detect 
severe precipitation events can effectively overcome 
this problem because those large noises can be 
effectively filtered out and the integrity of the 
information contained in the raw time series can be 
also ensured. In addition, the advantage of using 
cumulative anomaly series also lies in that the 
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formation of severe rainfall events is a timely 
response to the accumulated effects of weather 
parameters over a long period rather than 
instantaneous features, hence the prediction 
performance resulted from using cumulative anomaly 
time series can be further improved in comparison to 
that from using the anomaly series. 

(5) Based on all the previous studies and 
discussions, this study also proposed a new method, 
which is a hybrid of threshold-based model and 
anomaly-based model, for the VSRF of severe 
rainfall events. The calculation of the anomaly series 
of a predictor is to minimize the data range for 
optimizing the threshold selection process; then, with 
the obtained anomaly series of a predictor, the 
improved percentile method was adopted to calculate 
its specific threshold. In addition, those 
state-of-the-art techniques proposed for each step 
contained in the development of a robust detecting 
model was also utilized in the new method. 
Consequently, it can be concluded from the 
experimental results that the anomaly-based 
percentile thresholds of predictors derived from the 
PWV/ZTD time series have the potential to be 
applied to the severe rainfall detection with a 
reasonably good accuracy. 

(6) It can be clearly seen that the above models 
did not take the meteorological variables, e.g., 
temperature, pressure, and their impacts on the 
formation of the onset of SWEs into consideration. 
Therefore, this study also proposed a new model 
based on the improved BPNN algorithm, which has 
the ability of self-learning, nonlinear mapping and 
fast convergence. The predictors contained in the new 
model were PWV, ZTD, temperature, pressure, 
relative humidity, DOY and HOD. Prior to the model 
training phase, several factors that affecting the 
model’s performance including the selection of 
hyperparameters, the length of training samples, and 
its time period were investigated, thus a principle for 
model development was formulated. While after the 
training and validation phases of the modelling were 
completed, the weight maps of the well-trained 
model were further investigated for the knowledge of 
the interior structure of the technique and for the 
determination of the most active variables. 

Keywords: Global Navigation Satellite System 
(GNSS); GNSS meteorology (GNSS/MET); zenith 
total delay (ZTD); precipitable water vapor (PWV); 
very short-range forecasting (VSRF); severe weather 
events 
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