

LUND
UNIVERSITY

Efficient Fine-Tuning of Large Language Models

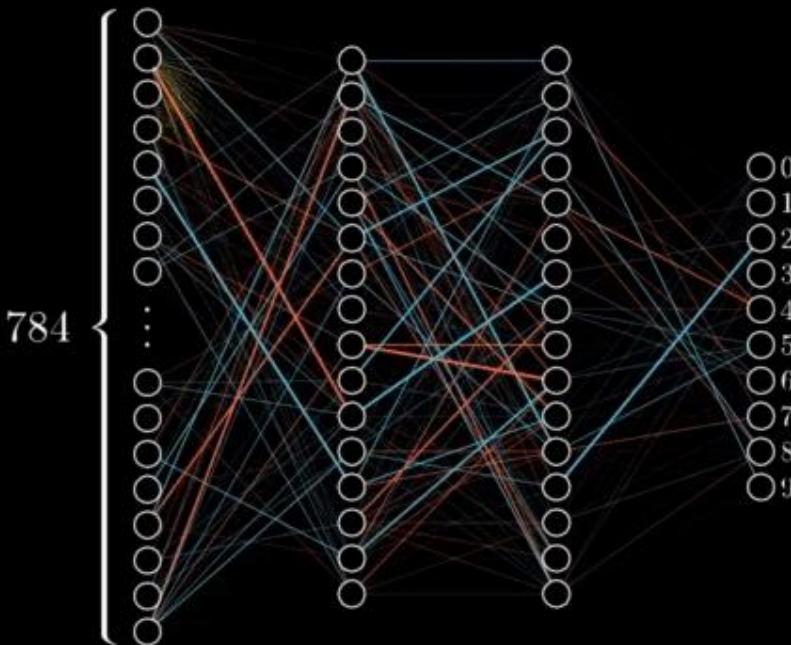
Baichuan Huang (TA in ML4IOT 2025)

Department of Electrical and Information Technology, Lund University, Sweden

baichuan.huang@eit.lth.se

Backpropagation

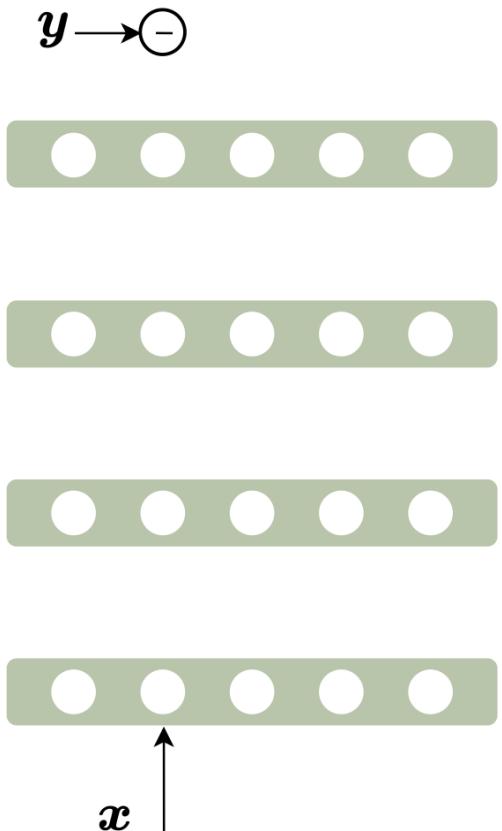
Training in
progress...



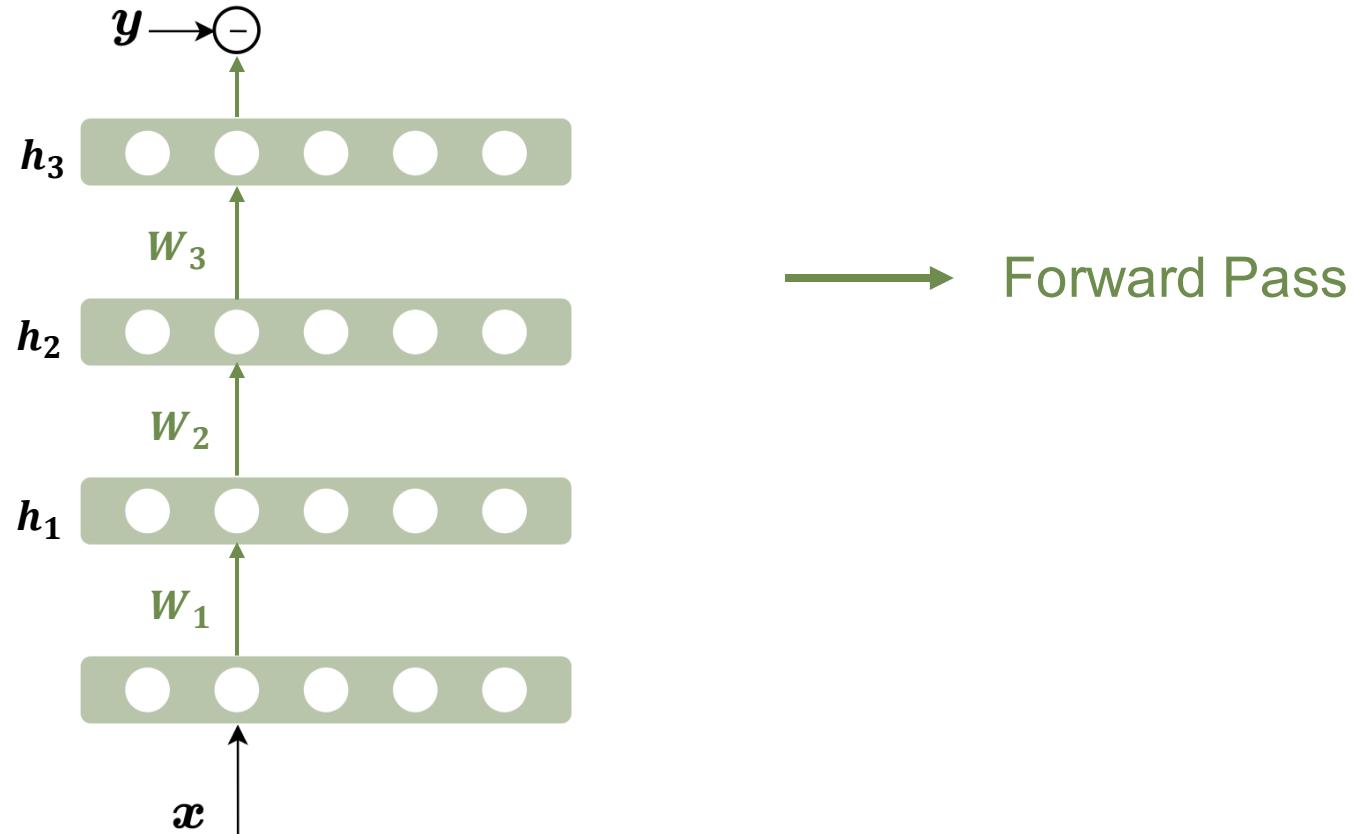
<https://www.youtube.com/watch?v=VkJfRKewkWw>

<https://robodk.com/blog/robodk-virtual-assistant/neuralnetwork-training/>

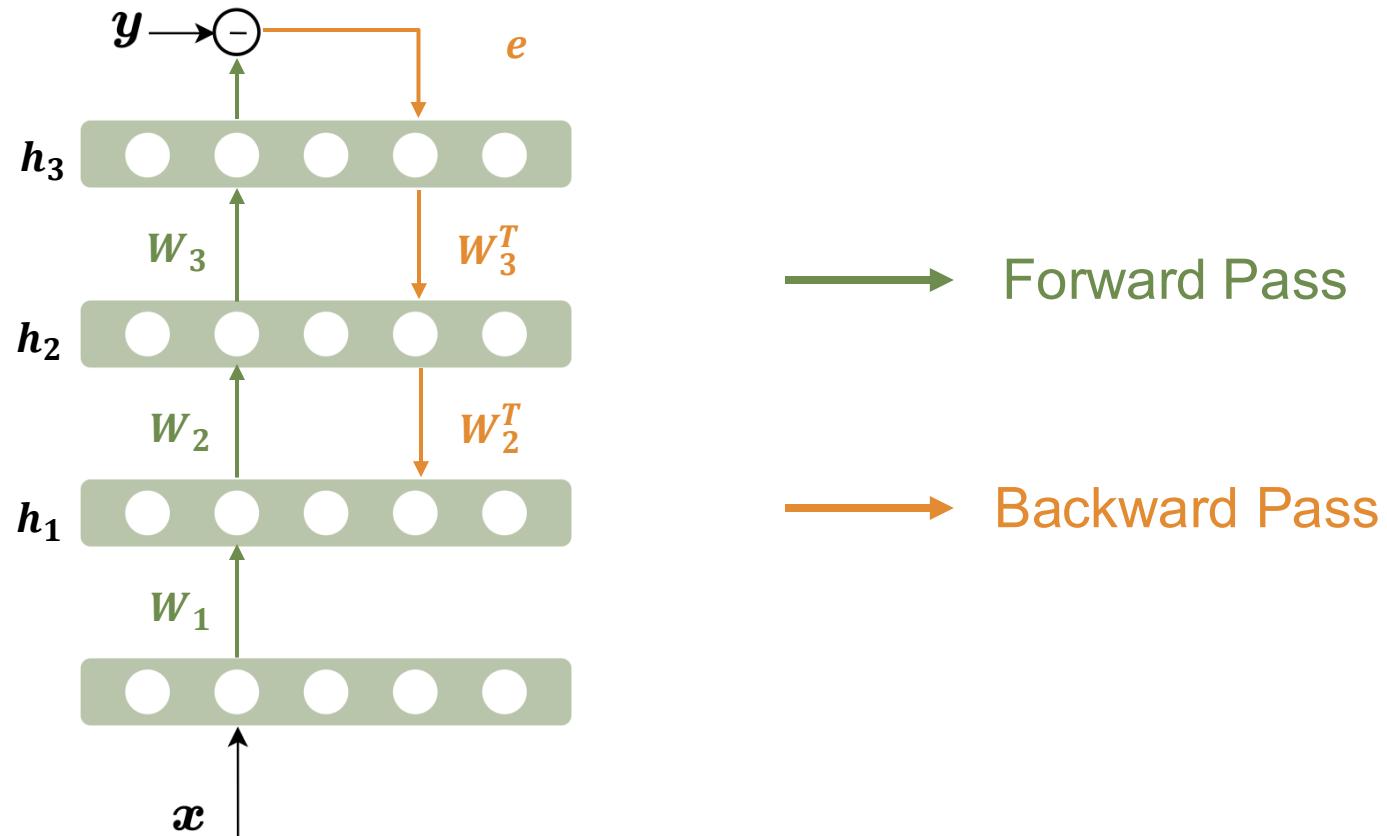
The Process of Backpropagation



The Process of Backpropagation



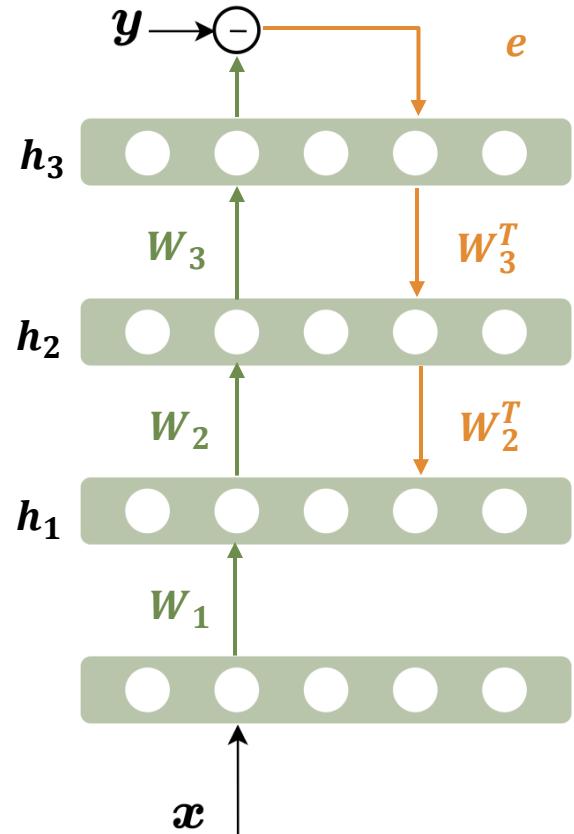
The Process of Backpropagation



→ Forward Pass

→ Backward Pass

The Biological Implausibility of BP



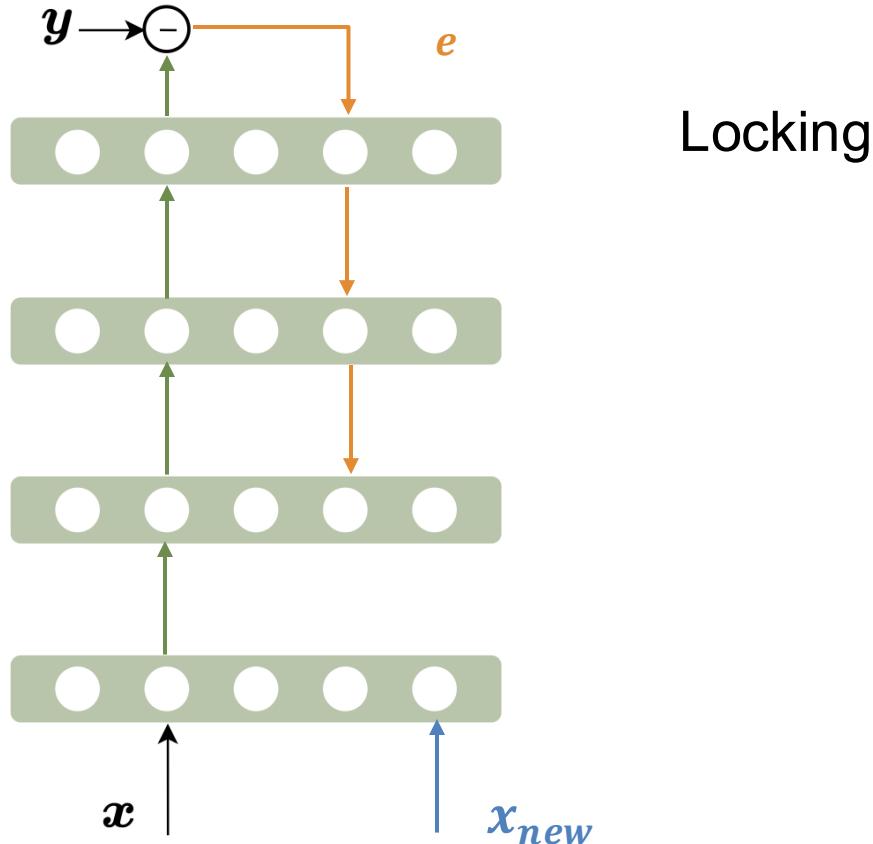
The Biological Implausibility of BP

$y \rightarrow \ominus$

Locking

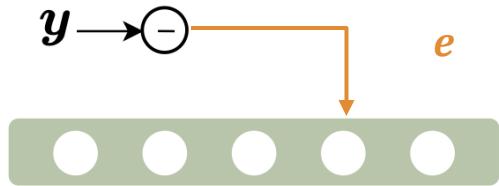
x

The Biological Implausibility of BP



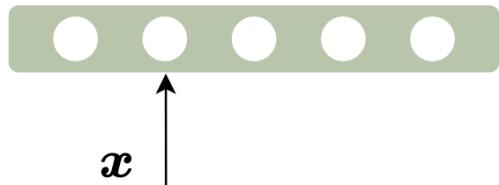
Locking

The Biological Implausibility of BP

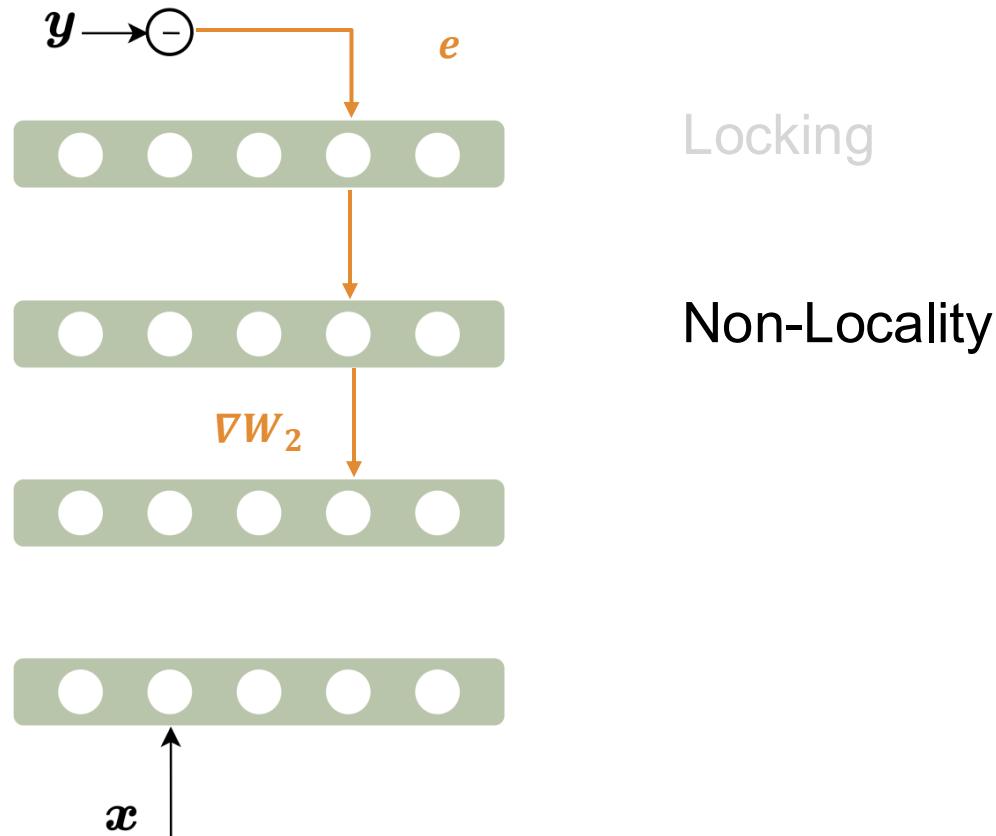


Locking

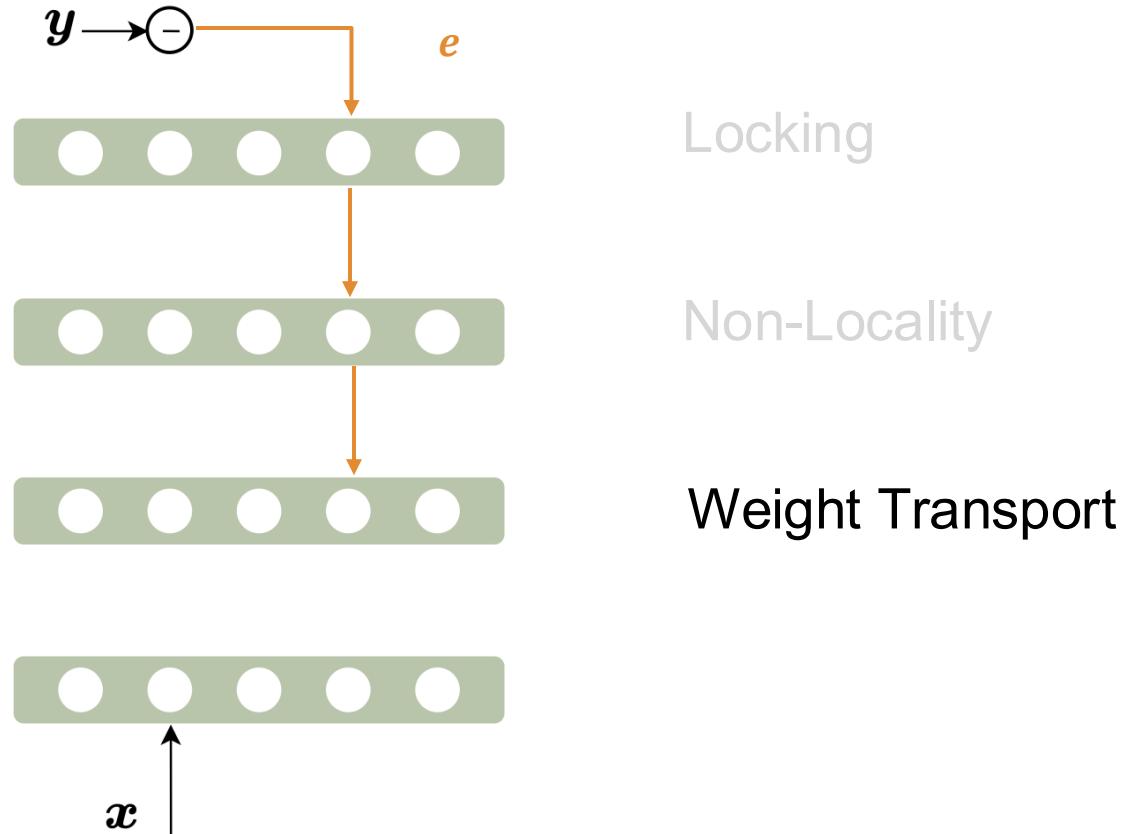
Non-Locality



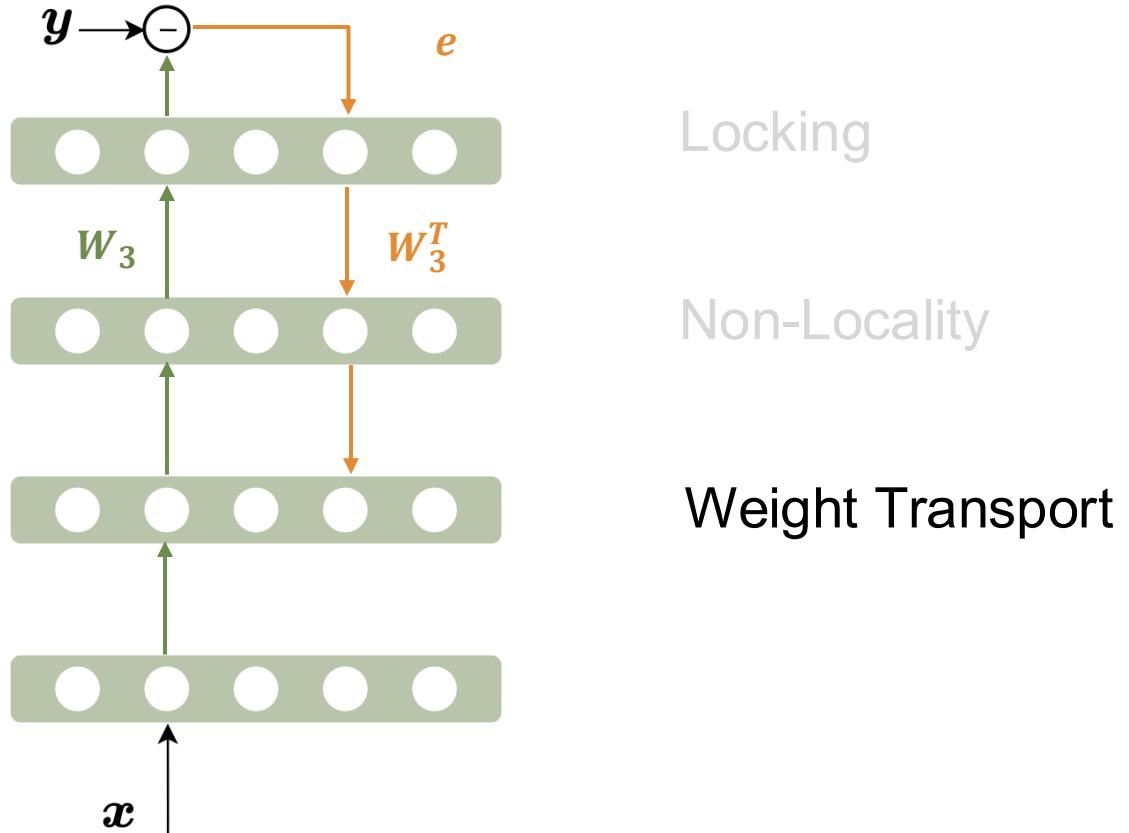
The Biological Implausibility of BP



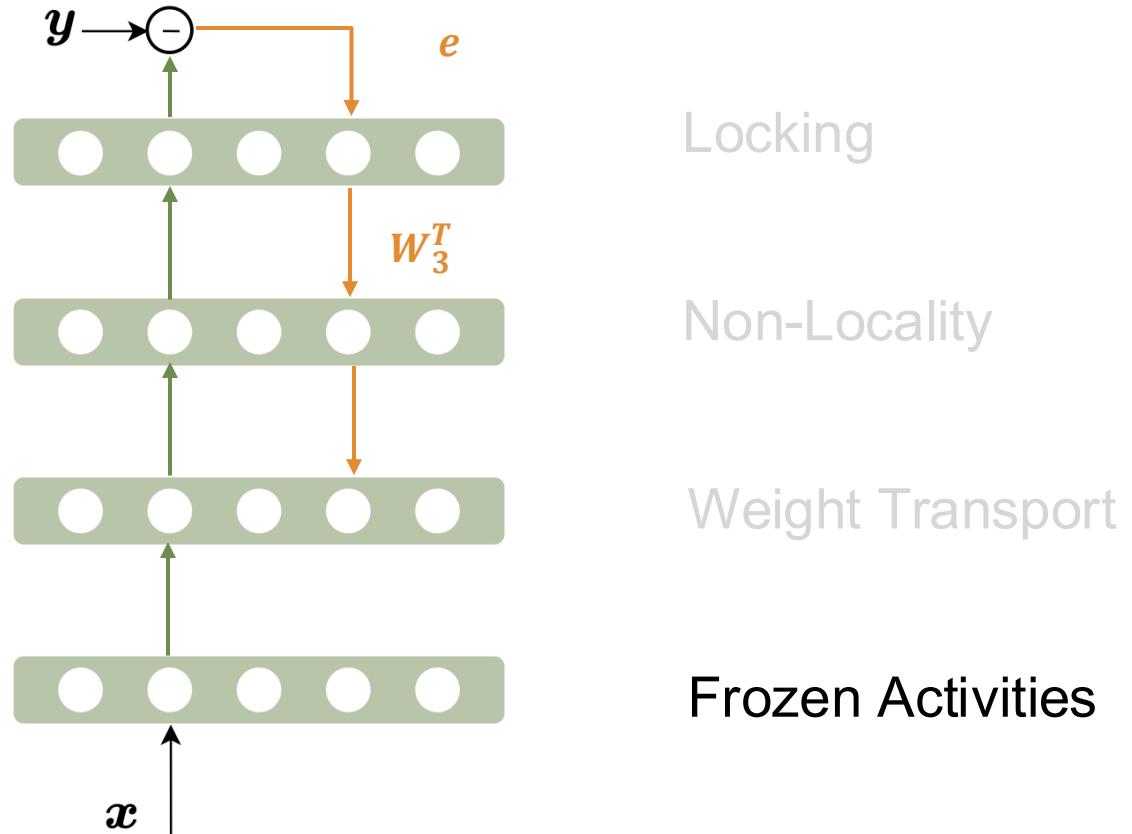
The Biological Implausibility of BP



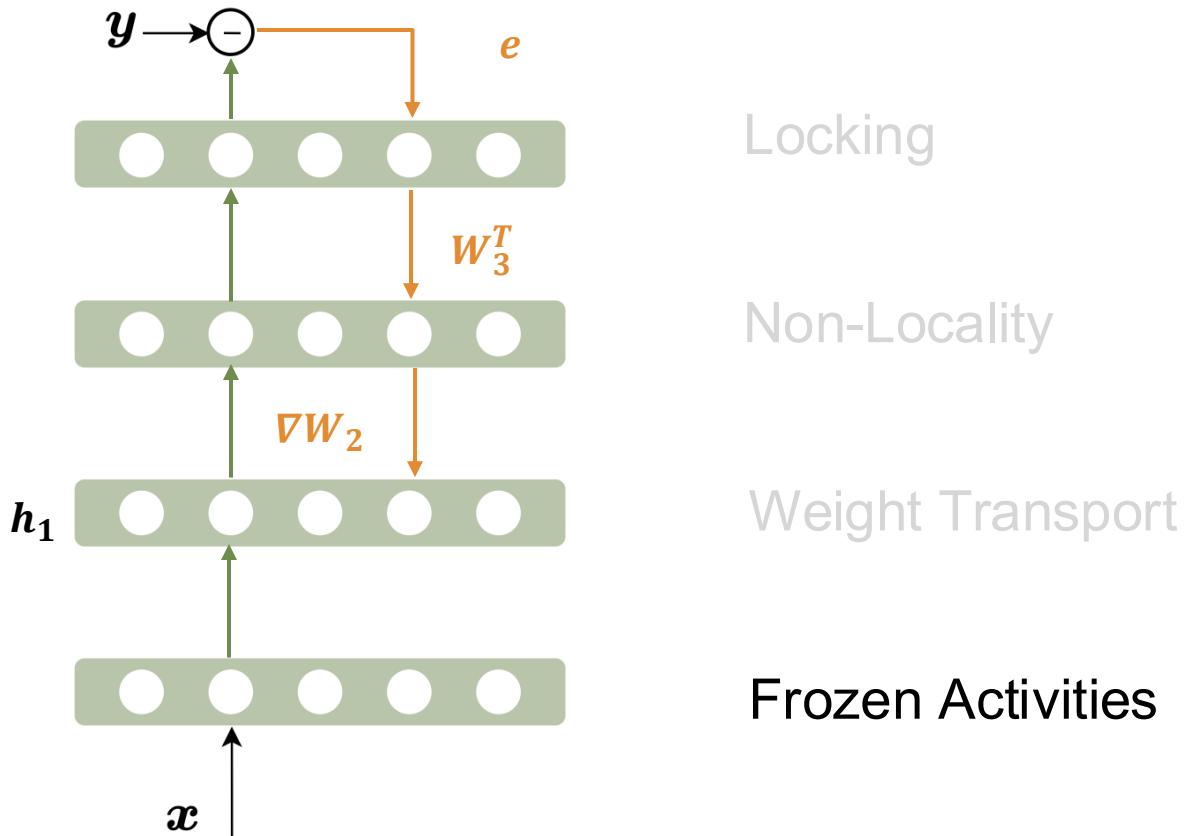
The Biological Implausibility of BP



The Biological Implausibility of BP



The Biological Implausibility of BP

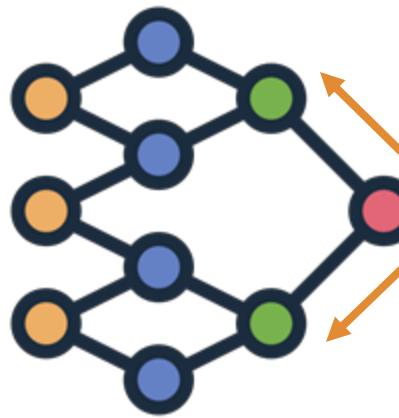


Biologically Plausible Alternatives

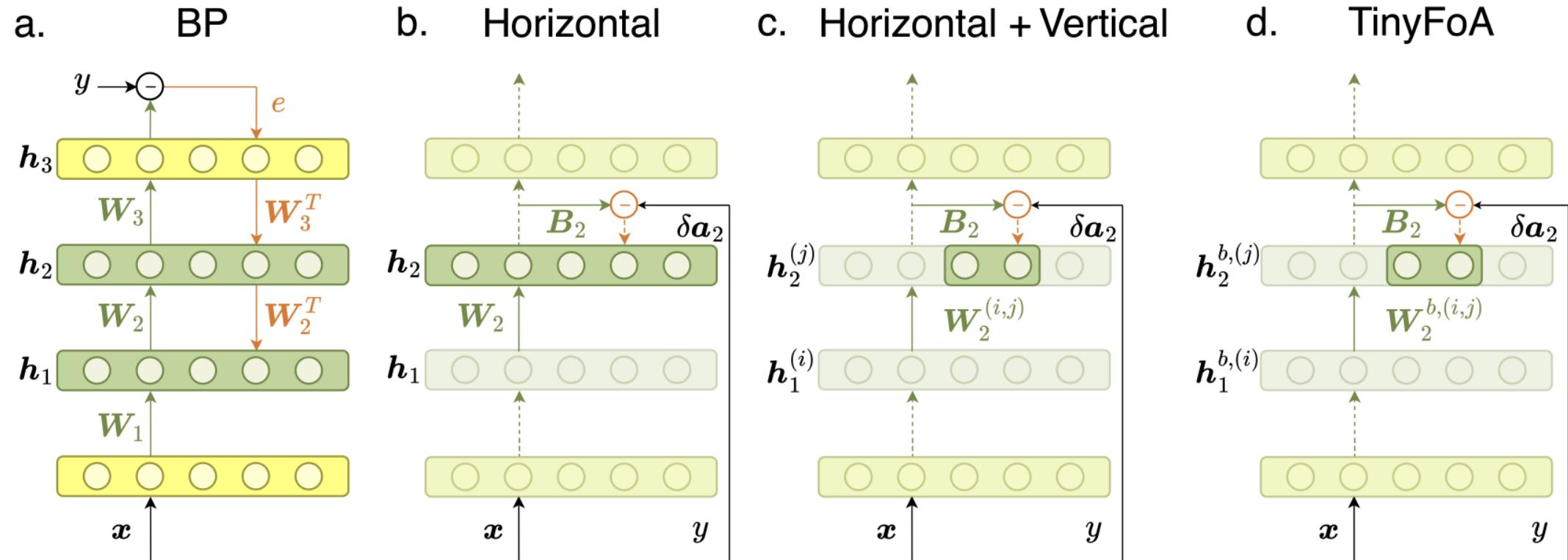
Human Brain
(~20 Watts)

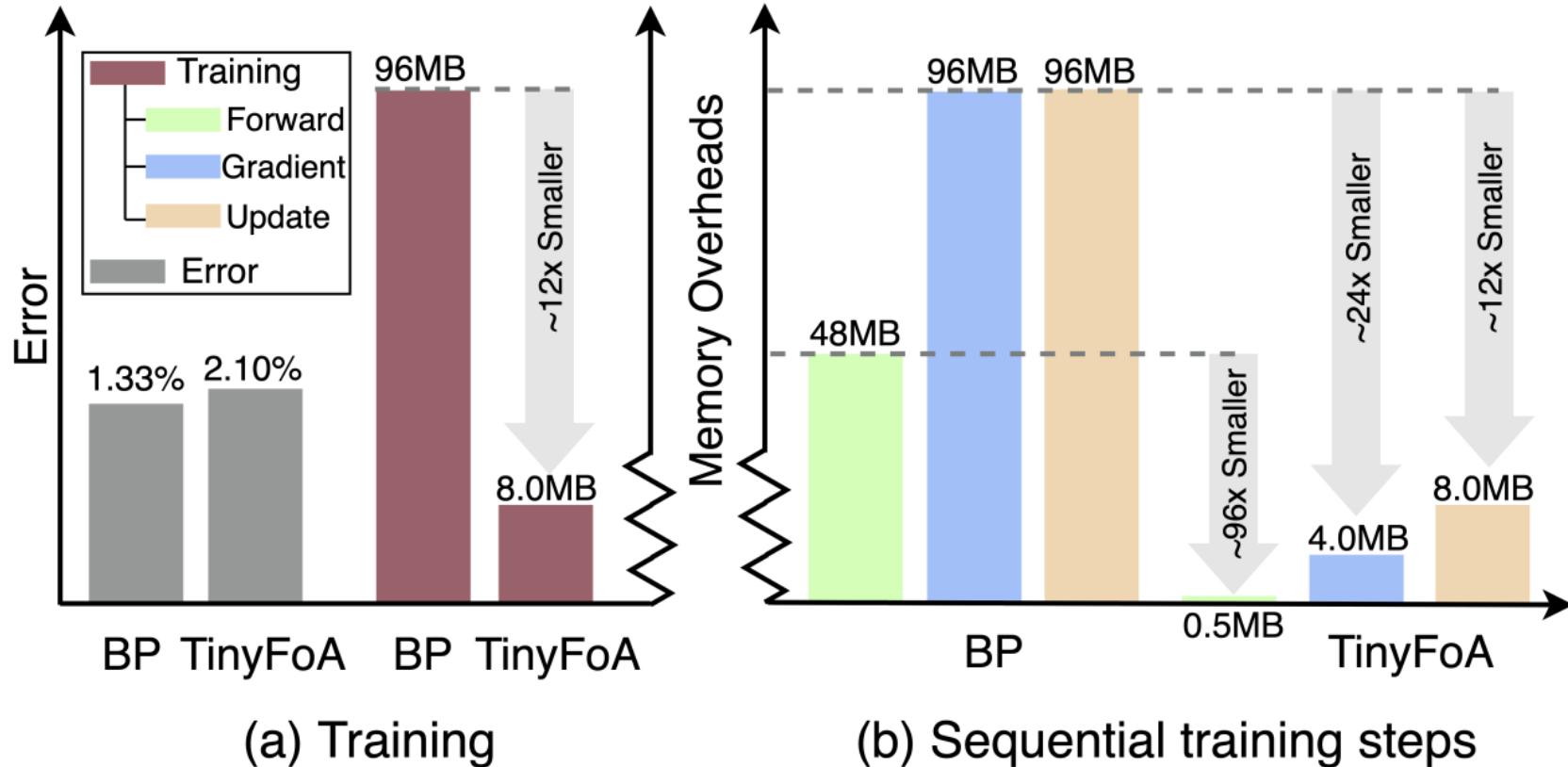
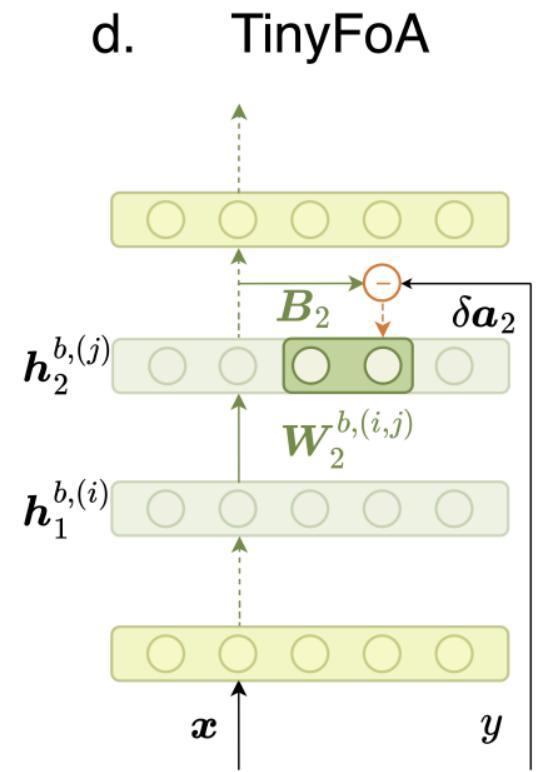
Biologically Plausible Alternatives

Human Brain
(**~20** Watts)

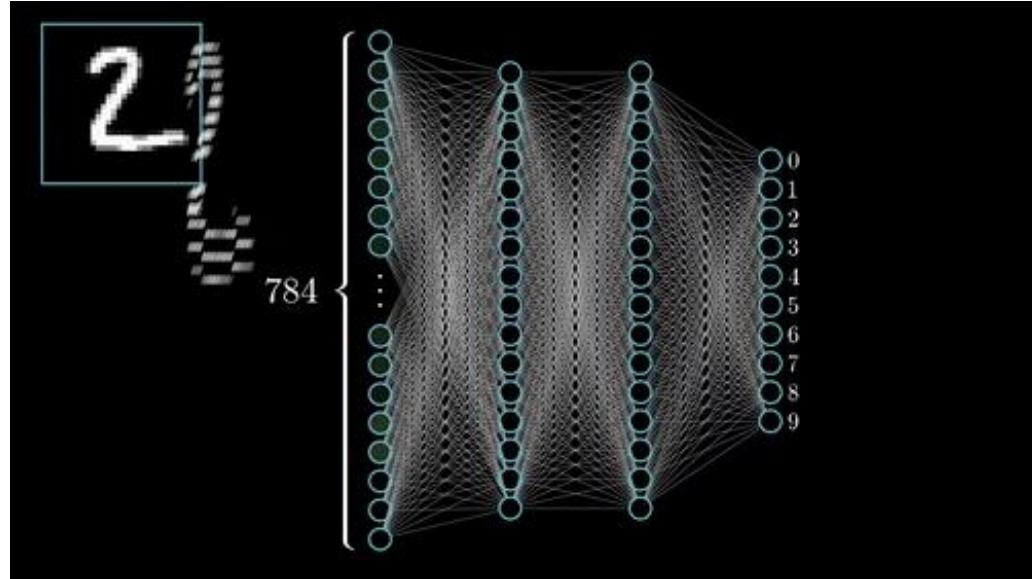


Back-Propagation
(Bio-**Implausible**)





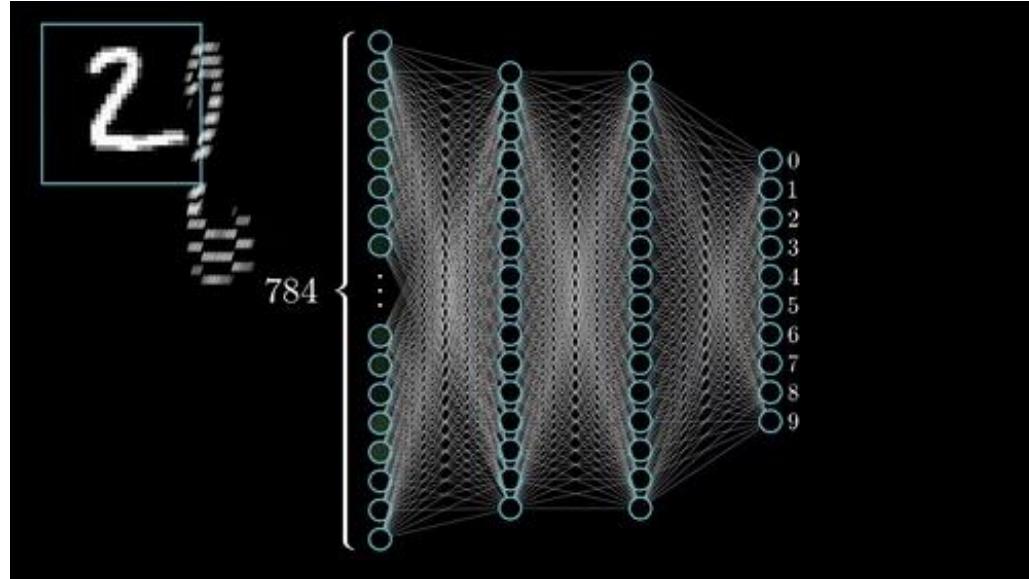
Quick Recap of Neural Network Layers in Deep Learning



Fully Connected (FC)

$$y_j = \sum_i (W_{ij} \cdot x_i) + b_j$$

Quick Recap of Neural Network Layers in Deep Learning



Fully Connected (FC)

$$y_j = \sum_i (W_{ij} \cdot x_i) + b_j$$

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

*

1	0	-1
1	0	-1
1	0	-1

=

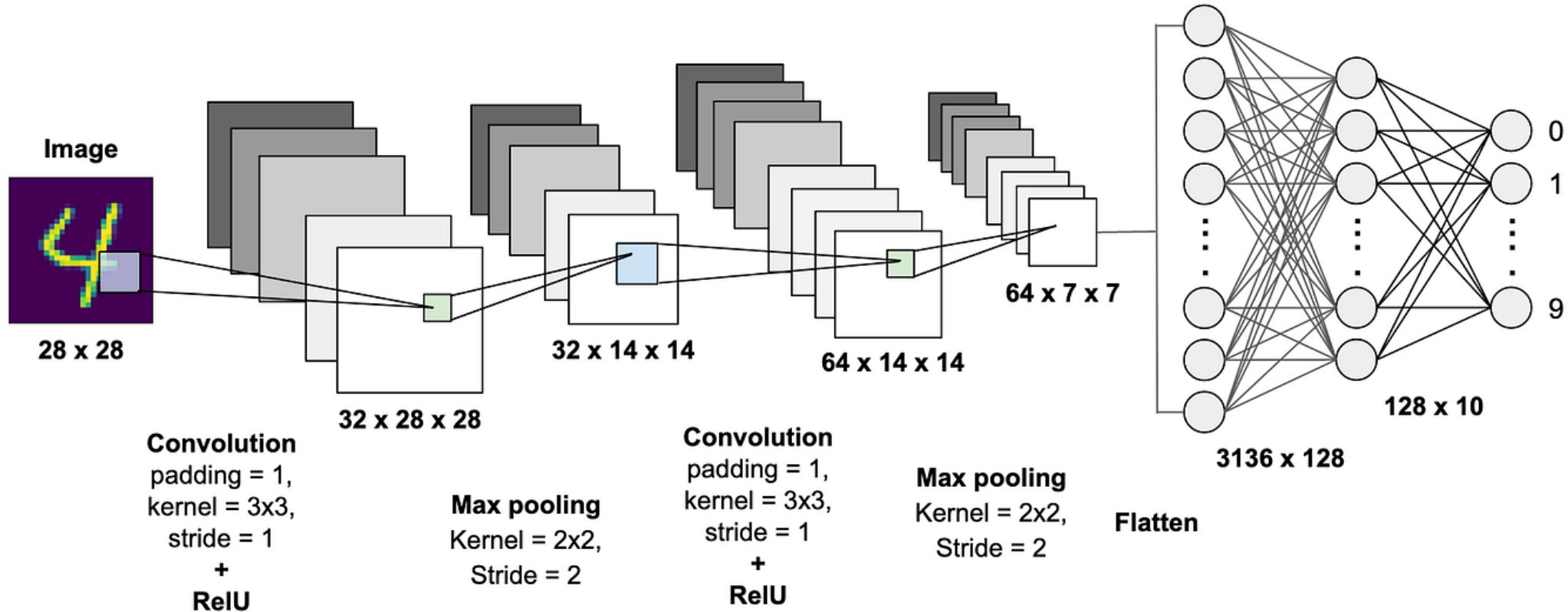
6		

$$7 \times 1 + 4 \times 1 + 3 \times 1 + 2 \times 0 + 5 \times 0 + 3 \times 0 + 3 \times 1 + 3 \times 1 + 2 \times 1 = 6$$

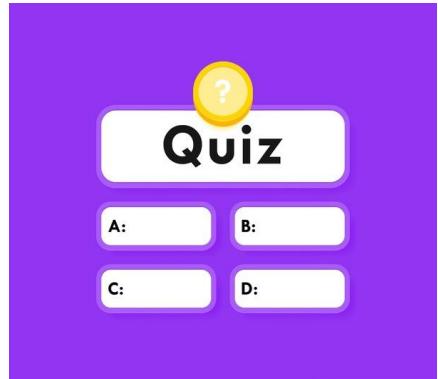
Convolutional (CNN)

$$y_{ij} = \sum_{w=1}^W \sum_{h=1}^H x(i+m, j+n) \cdot W_{mn}$$

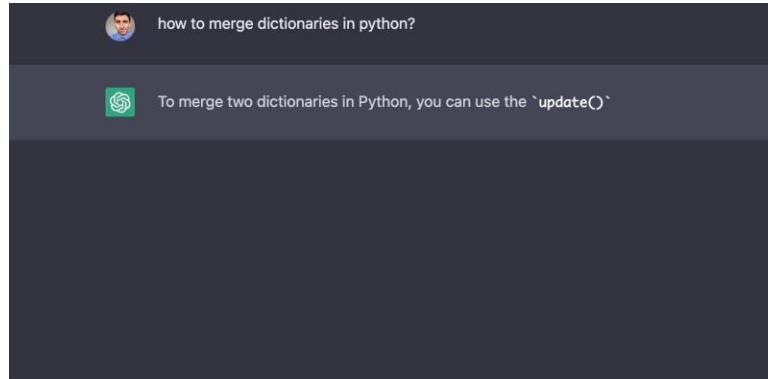
Real Application with FC and CNN



Large Language Models (LLMs)



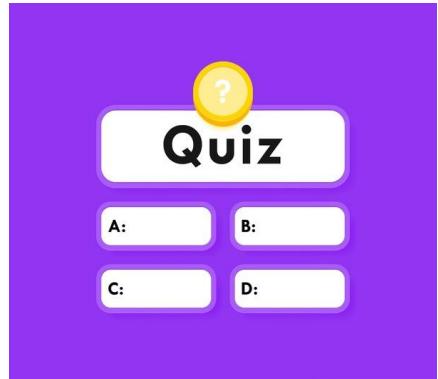
Classification



Generation

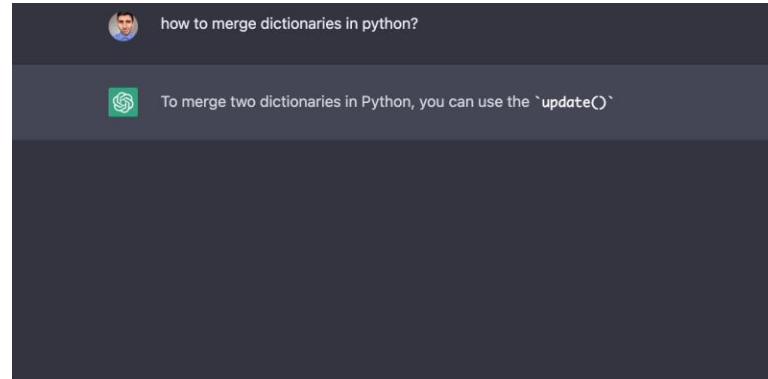
seq2seq

Large Language Models (LLMs)



Classification

Understanding



Generation

Dialogue/Coding

seq2seq

Translator

Natural Language Processing (NLP)

Bert, GPT, LLaMA, DeepSeek

Transformer

Self-Attention

Self-Attention (example)

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

I like football, but basketball more

Self-Attention (example)

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

I like football, but basketball more

Token

I

like

football

,

but

basketball

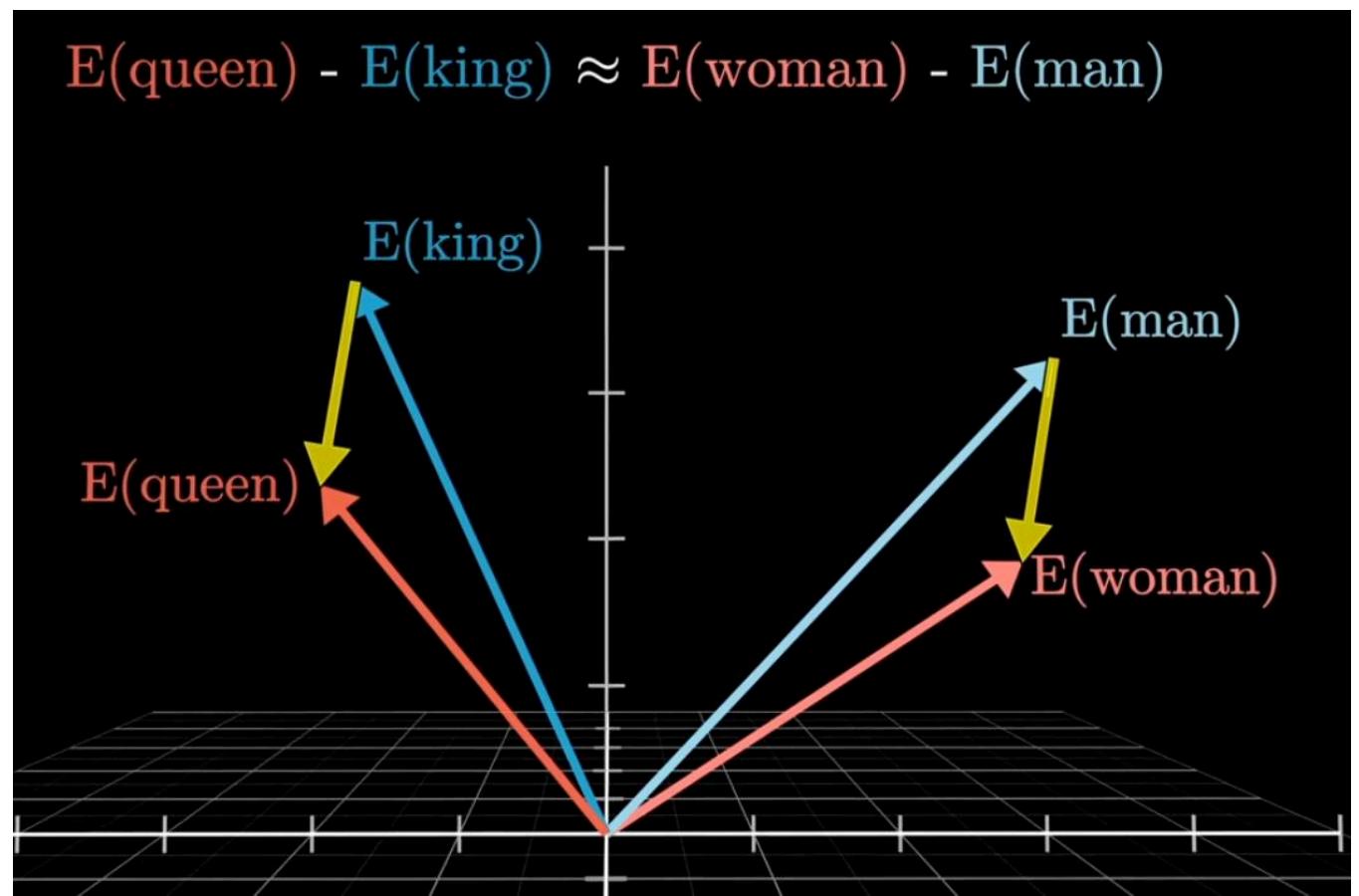
more

Self-Attention (example)

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

I like football, but basketball more

Token	Embedding
I	[0.1, 0.0]
like	[0.9, 0.1]
football	[0.8, 0.9]
,	[0.0, 0.0]
but	[0.2, 0.1]
basketball	[0.9, 0.8]
more	[0.4, 0.2]

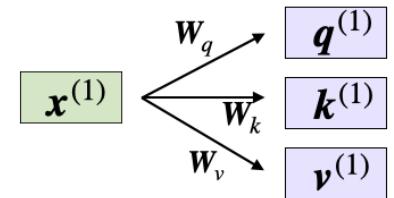
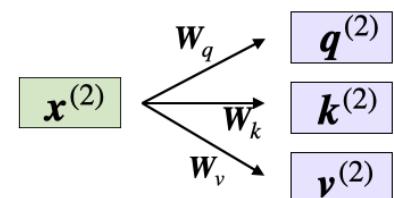
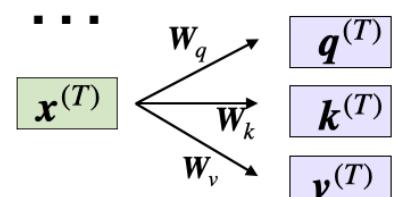


Self-Attention (example)

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

I like football, but basketball more

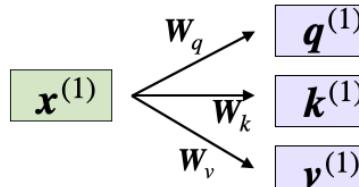
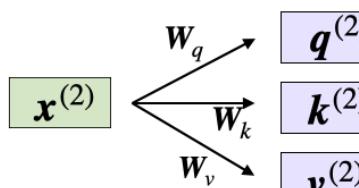
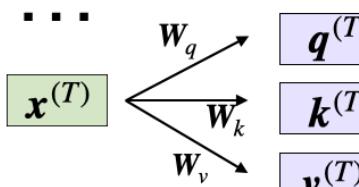
Token	Embedding
I	[0.1, 0.0]
like	[0.9, 0.1]
football	[0.8, 0.9]
,	[0.0, 0.0]
but	[0.2, 0.1]
basketball	[0.9, 0.8]
more	[0.4, 0.2]



Self-Attention (example)

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

I like football, but basketball more

Token	Embedding		
I	[0.1, 0.0]		Query What am I looking for?
like	[0.9, 0.1]		Key What is this token about?
football	[0.8, 0.9]		Value Here is the actual information
,	[0.0, 0.0]		
but	[0.2, 0.1]		
basketball	[0.9, 0.8]		
more	[0.4, 0.2]		

Self-Attention (if $W_{q,k,v} = I$, We pick Q-like)

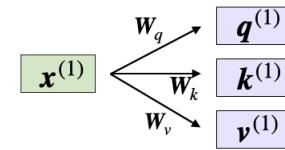
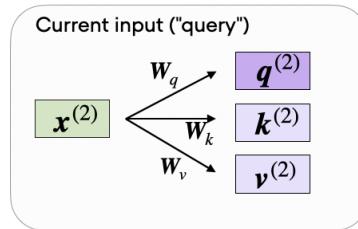
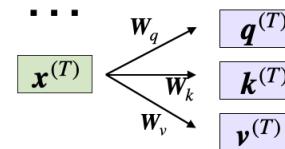
$$\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

Token	Embedding
I	[0.1, 0.0]
like	[0.9, 0.1]
football	[0.8, 0.9]
,	[0.0, 0.0]
and	[0.2, 0.1]
basketball	[0.9, 0.8]
more	[0.4, 0.2]

Self-Attention (if $W_{q,k,v} = I$, We pick Q-like)

$$\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

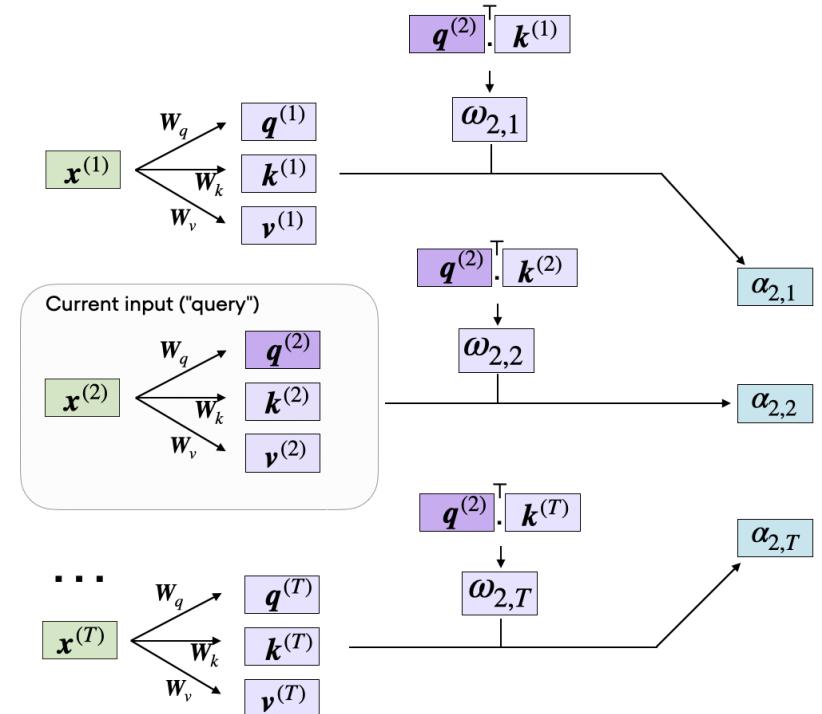
Token	Embedding /Q/K/V
I	[0.1, 0.0]
like	[0.9, 0.1]
football	[0.8, 0.9]
,	[0.0, 0.0]
and	[0.2, 0.1]
basketball	[0.9, 0.8]
more	[0.4, 0.2]



Self-Attention (if $W_{q,k,v} = I$, We pick Q-like)

$$\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

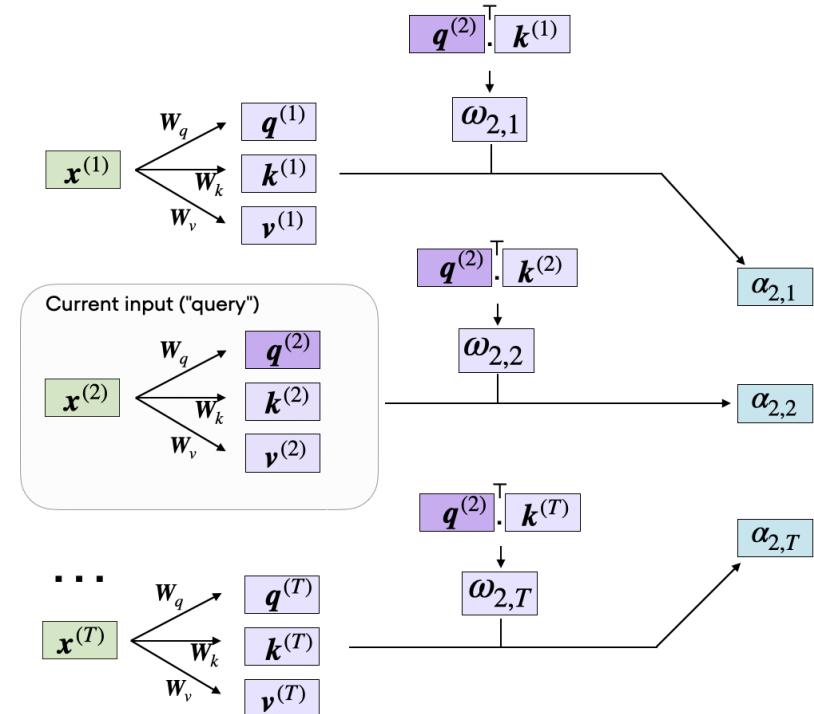
Token	Embedding /Q/K/V	$Q \cdot K^T$
I	$[0.9, 0.1] \cdot [0.1, 0.0]^T$	0.09
like	[0.9, 0.1]	
football	[0.8, 0.9]	
,	[0.0, 0.0]	
and	[0.2, 0.1]	
basketball	[0.9, 0.8]	
more	[0.4, 0.2]	



Self-Attention (if $W_{q,k,v} = I$, We pick Q-like)

$$\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

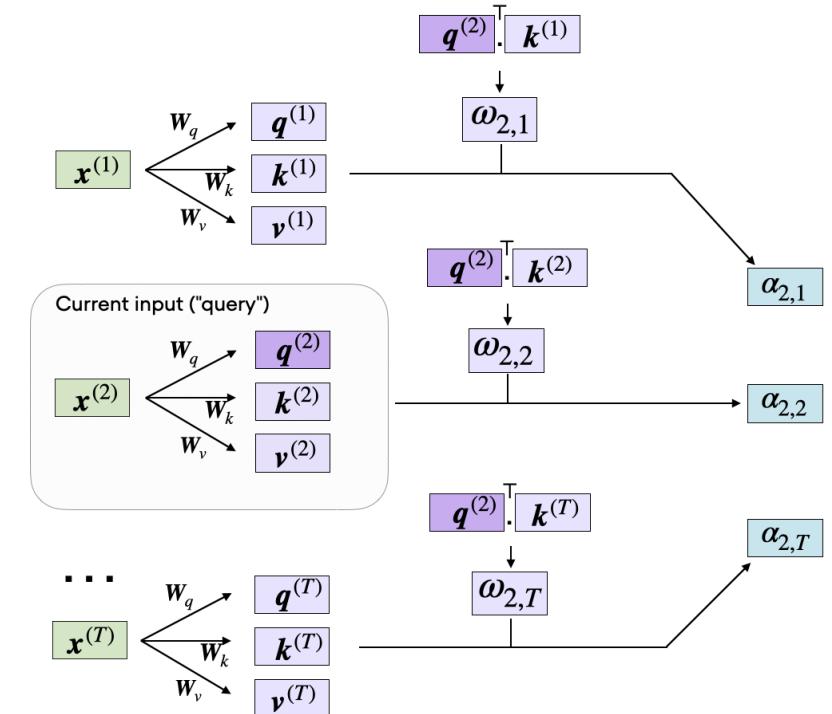
Token	Embedding / Q / K / V	$Q \cdot K^T$
I	$[0.9, 0.1] \cdot [0.1, 0.0]^T$	0.09
like	$[0.9, 0.1] \cdot [0.9, 0.1]^T$	0.82
football	$[0.9, 0.1] \cdot [0.8, 0.9]^T$	0.81
,	$[0.9, 0.1] \cdot [0.0, 0.0]^T$	0.00
and	$[0.9, 0.1] \cdot [0.2, 0.1]^T$	0.19
basketball	$[0.9, 0.1] \cdot [0.9, 0.8]^T$	0.89
more	$[0.9, 0.1] \cdot [0.4, 0.2]^T$	0.38



Self-Attention (if $W_{q,k,v} = I$, We pick Q-like)

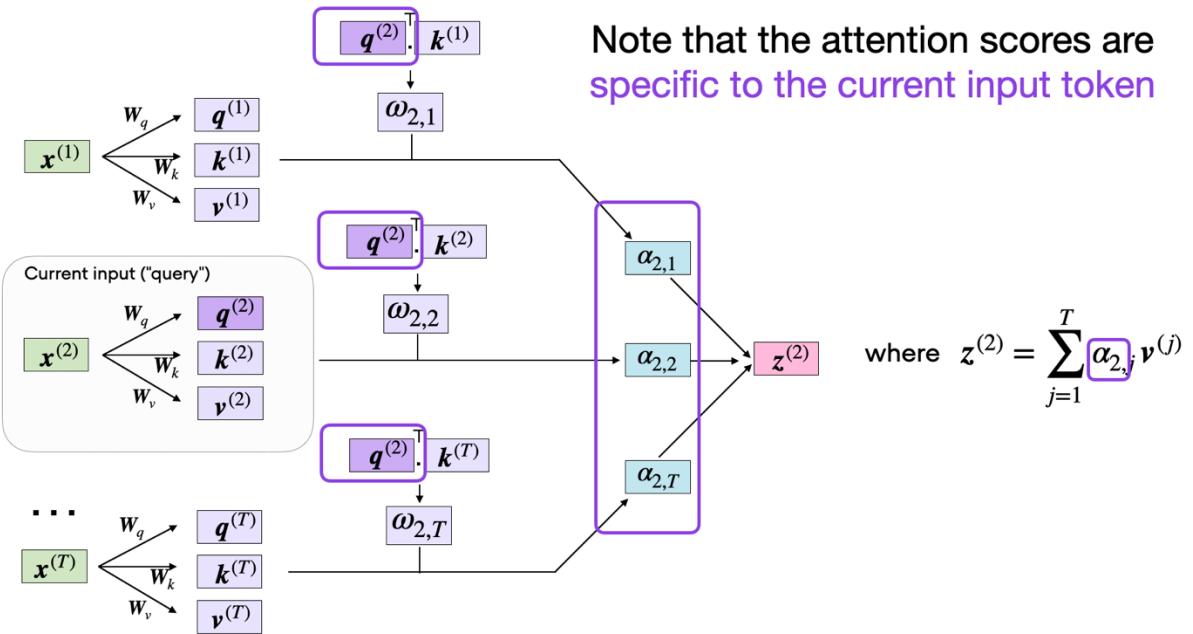
$$\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

Token	Embedding / Q / K / V	$Q \cdot K^T$	softmax
I	$[0.9, 0.1] \cdot [0.1, 0.0]^T$	0.09	0.09
like	$[0.9, 0.1] \cdot [0.9, 0.1]^T$	0.82	0.19
football	$[0.9, 0.1] \cdot [0.8, 0.9]^T$	0.81	0.19
,	$[0.9, 0.1] \cdot [0.0, 0.0]^T$	0.00	0.08
and	$[0.9, 0.1] \cdot [0.2, 0.1]^T$	0.19	0.10
basketball	$[0.9, 0.1] \cdot [0.9, 0.8]^T$	0.89	0.20
more	$[0.9, 0.1] \cdot [0.4, 0.2]^T$	0.38	0.12



Self-Attention

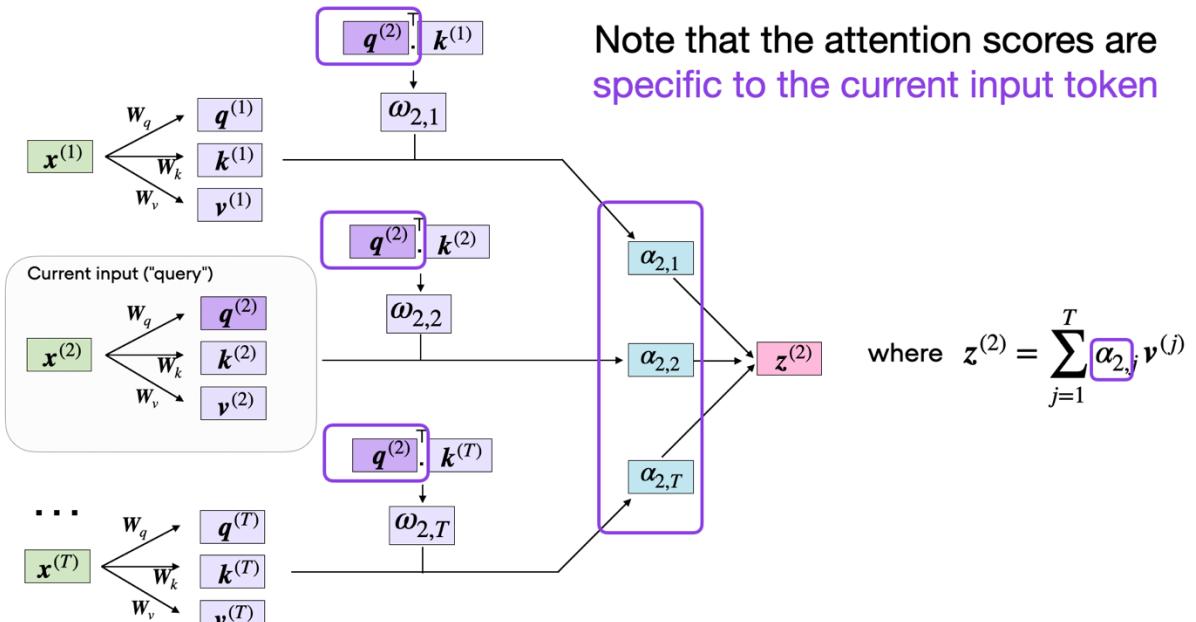
$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$



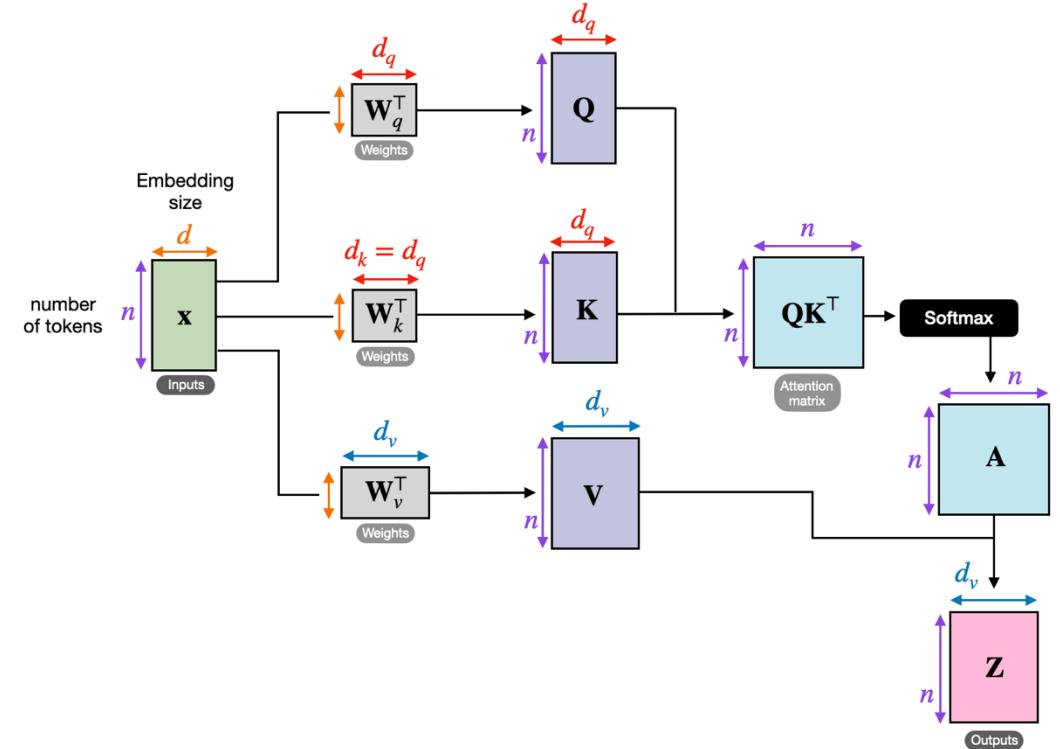
Specific Query

Self-Attention

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$



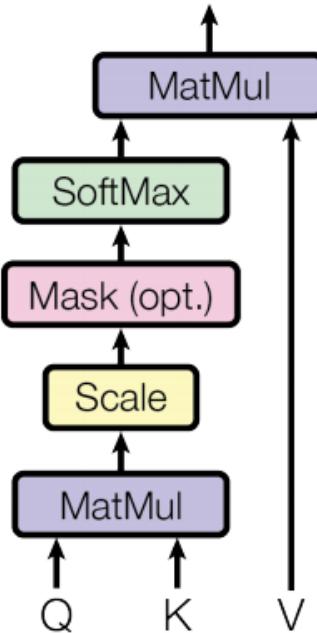
Specific Query



Parallel All Tokens

Attention to Transformer

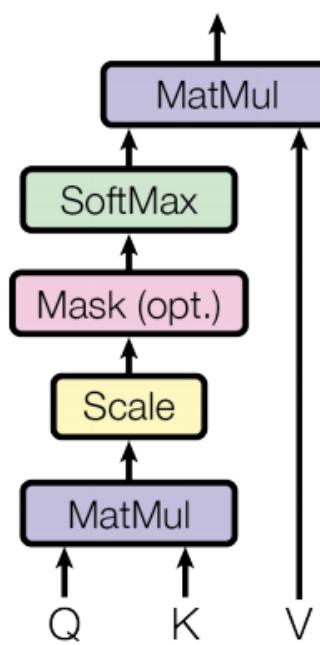
Self-Attention



$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

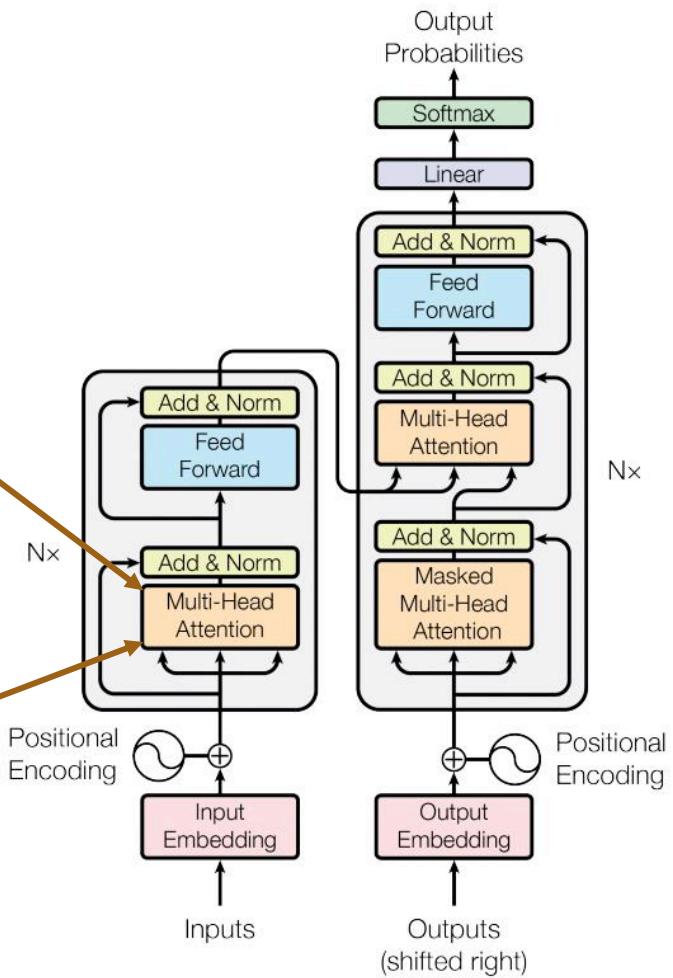
Attention to Transformer

Self-Attention

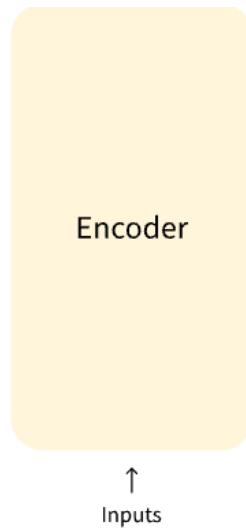


$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Transformer



LLM Architectures

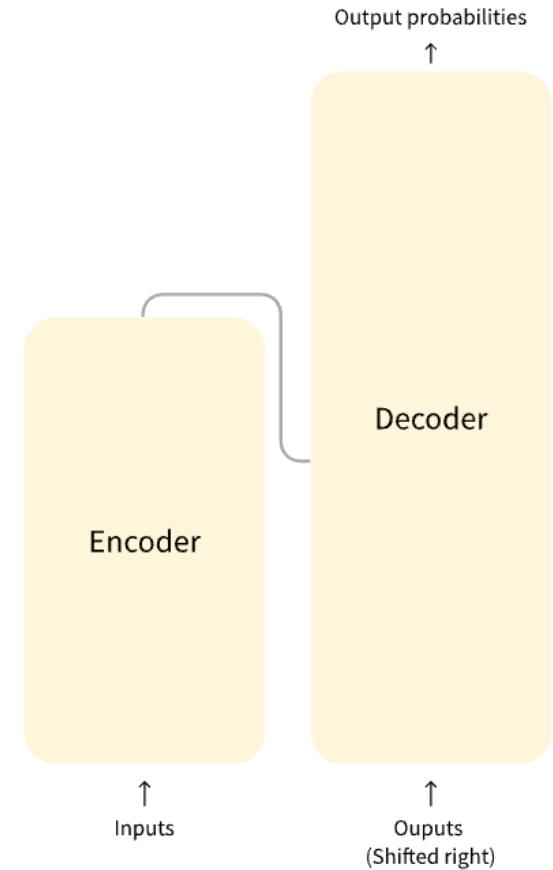


Classification

Bert, RoBERTa

Generation

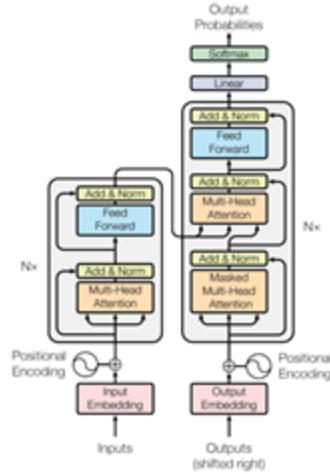
GPT, LLaMA



seq2seq

T5

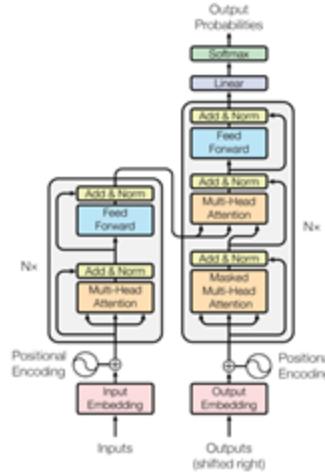
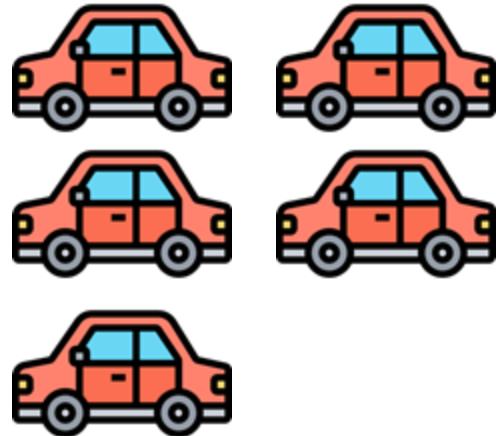
Environmental Impact of Training Transformer



Training Transformer (Strubell E. 2020)

626,155 lbs

Environmental Impact of Training Transformer



Training Transformer (Strubell E. 2020)

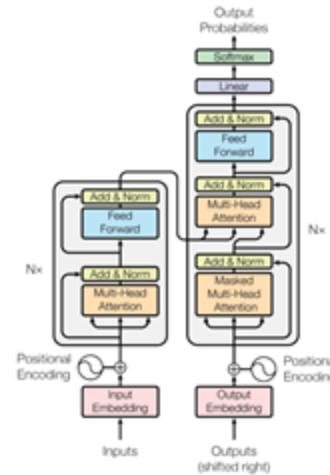
626,155 lbs

=

5×126,000 lbs

Total Lifetime of a Car

Environmental Impact of Training Transformer



Training Transformer (Strubell E. 2020)

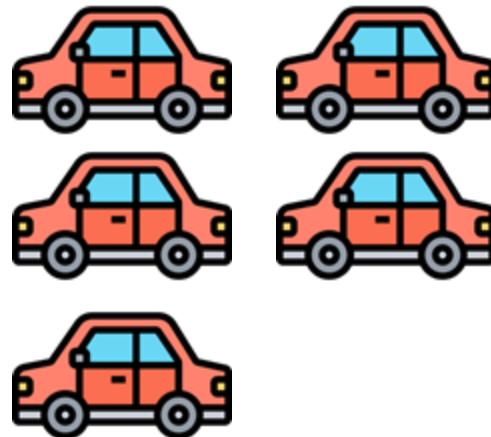
626,155 lbs

=

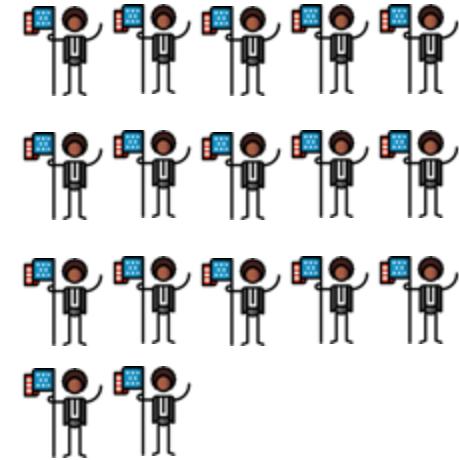
5×126,000 lbs

=

17×36,156 lbs

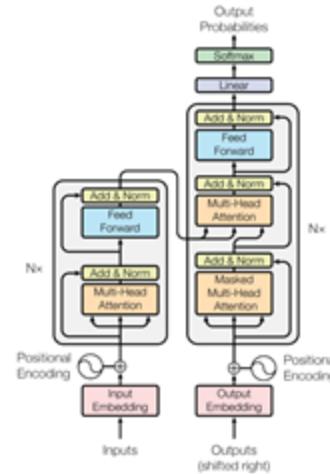


Total Lifetime of a Car



Average American in a Year

Environmental Impact of Training Transformer



Training Transformer (Strubell E. 2020)

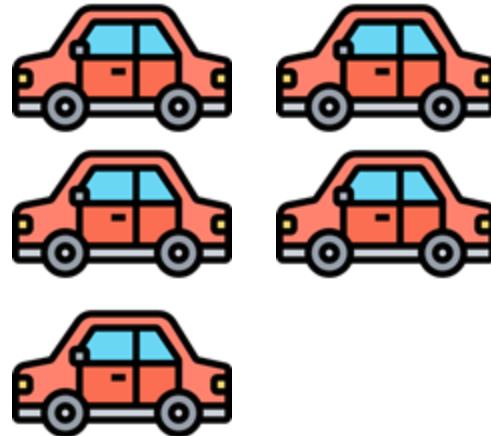
626,155 lbs

=

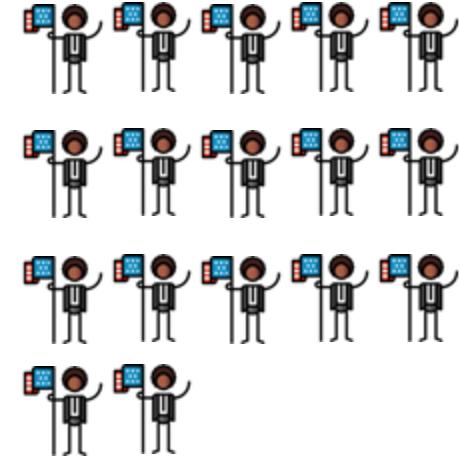
5×126,000 lbs

=

17×36,156 lbs



Total Lifetime of a Car



Average American in a Year

The computational resources needed to produce a best-in-class AI model has on average doubled every 3.4 months.

Energy Consumption of Training LLMs

GPT-3

GPT-4

D. Patterson, et al. Carbon emissions and large neural network training, 2021.

<https://tinyml.substack.com/p/the-carbon-impact-of-large-language>

Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Energy Consumption of Training LLMs

GPT-3

GPT-4

1,216,950 lbs

×13

15,238,333 lbs

D. Patterson, et al. Carbon emissions and large neural network training, 2021.

<https://tinyml.substack.com/p/the-carbon-impact-of-large-language>

Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Energy Consumption of Training LLMs

GPT-3

GPT-4

1,216,950 lbs

×13

15,238,333 lbs

1,287 Megawatt-Hour

× 48

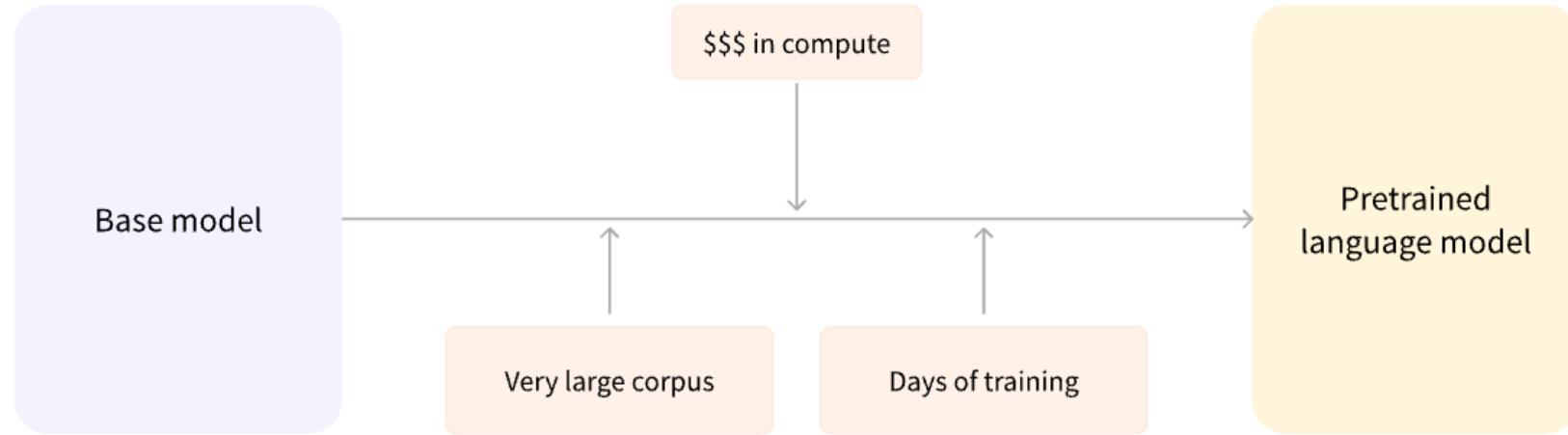
62,318 Megawatt-Hour

D. Patterson, et al. Carbon emissions and large neural network training, 2021.

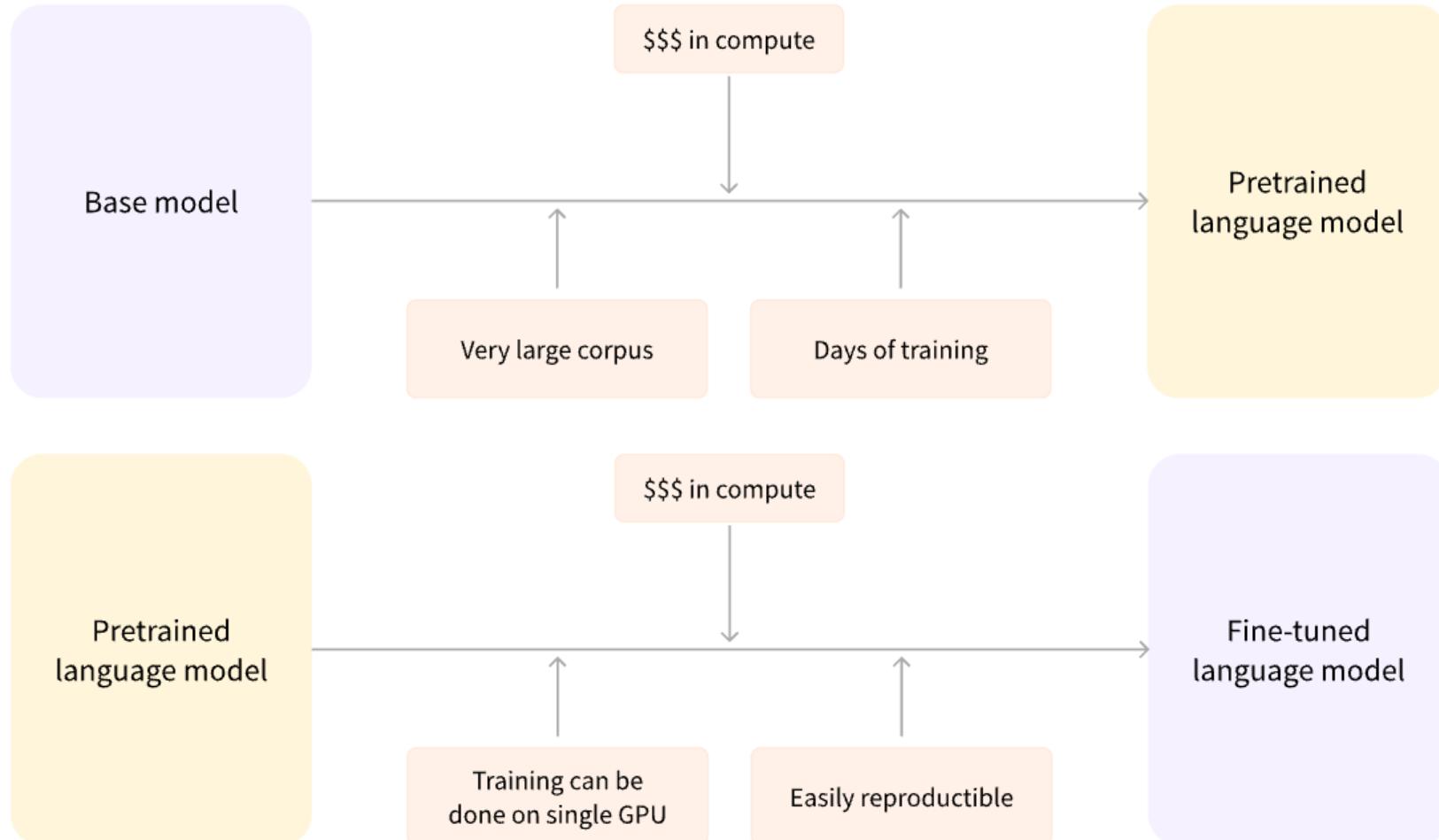
<https://tinyml.substack.com/p/the-carbon-impact-of-large-language>

Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

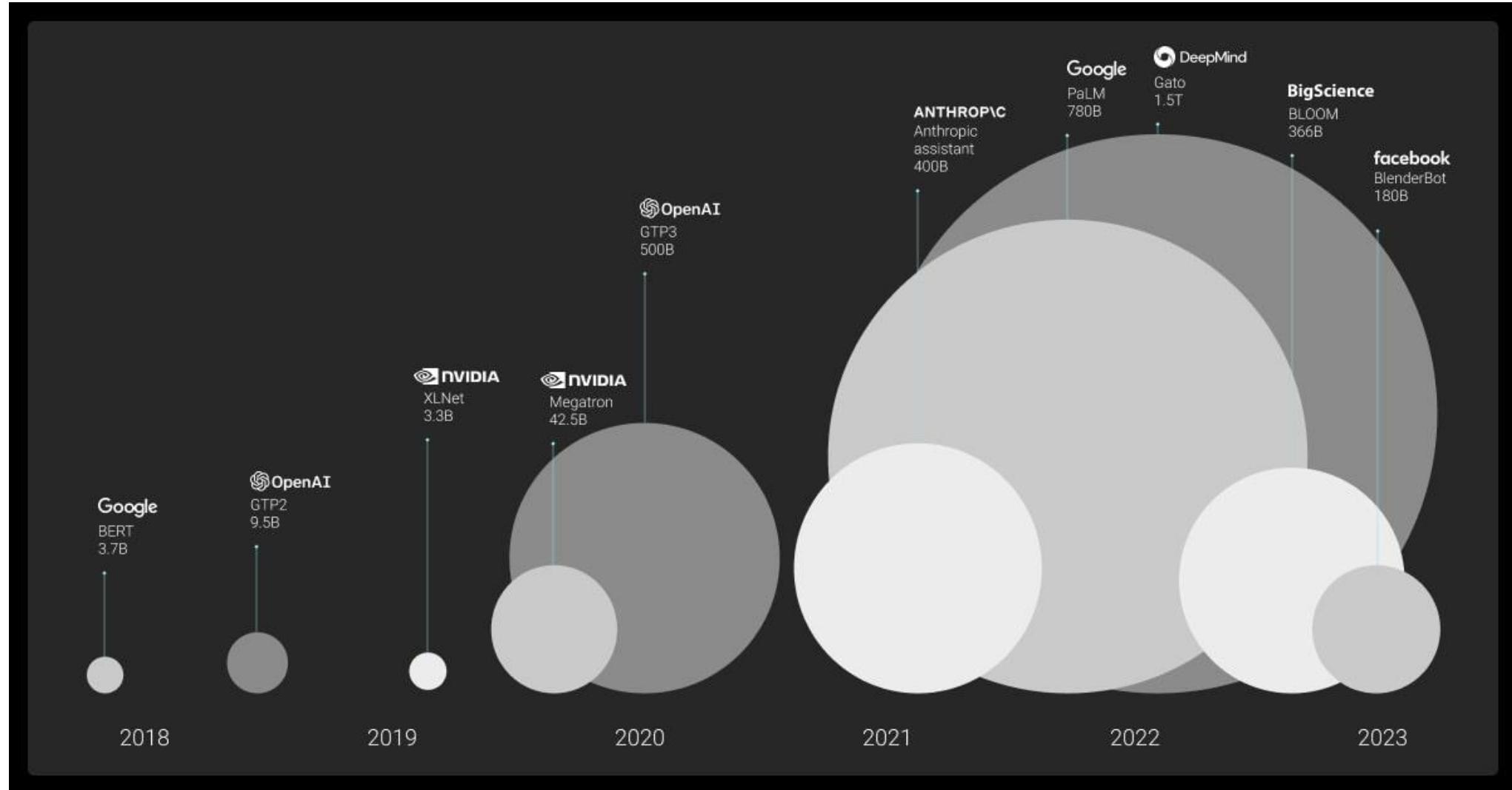
Pre-Trained LLMs to Task Adaptation



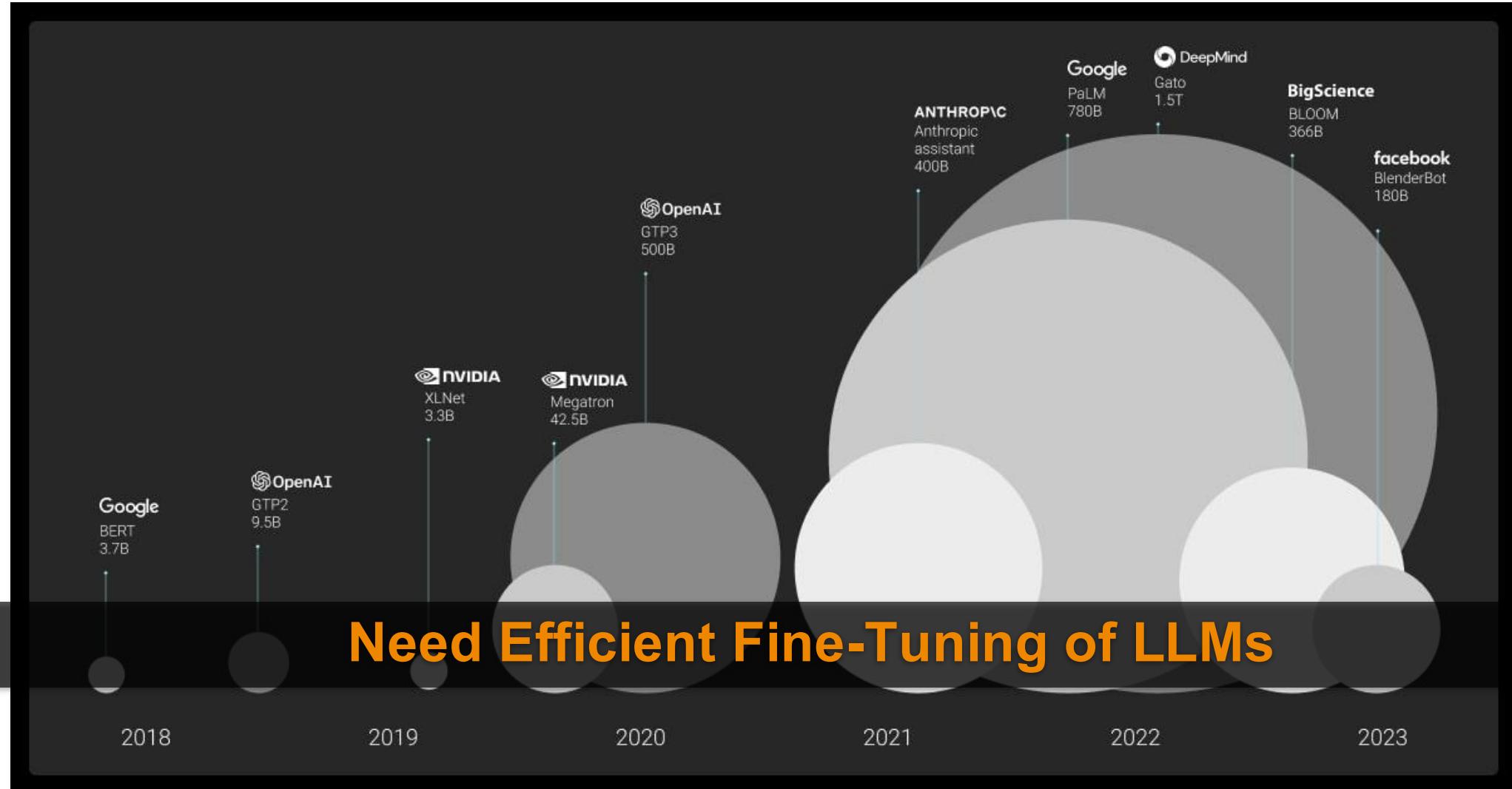
Pre-Trained LLMs to Task Adaptation



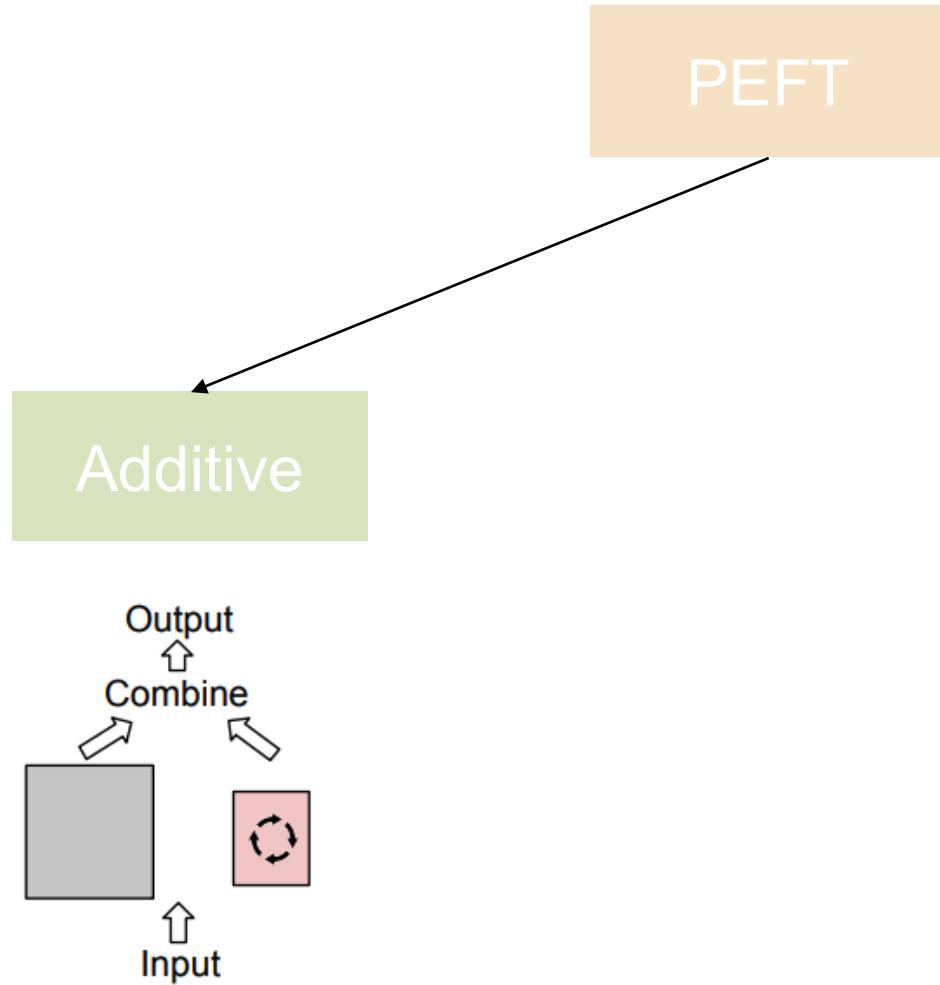
Size of LLMs



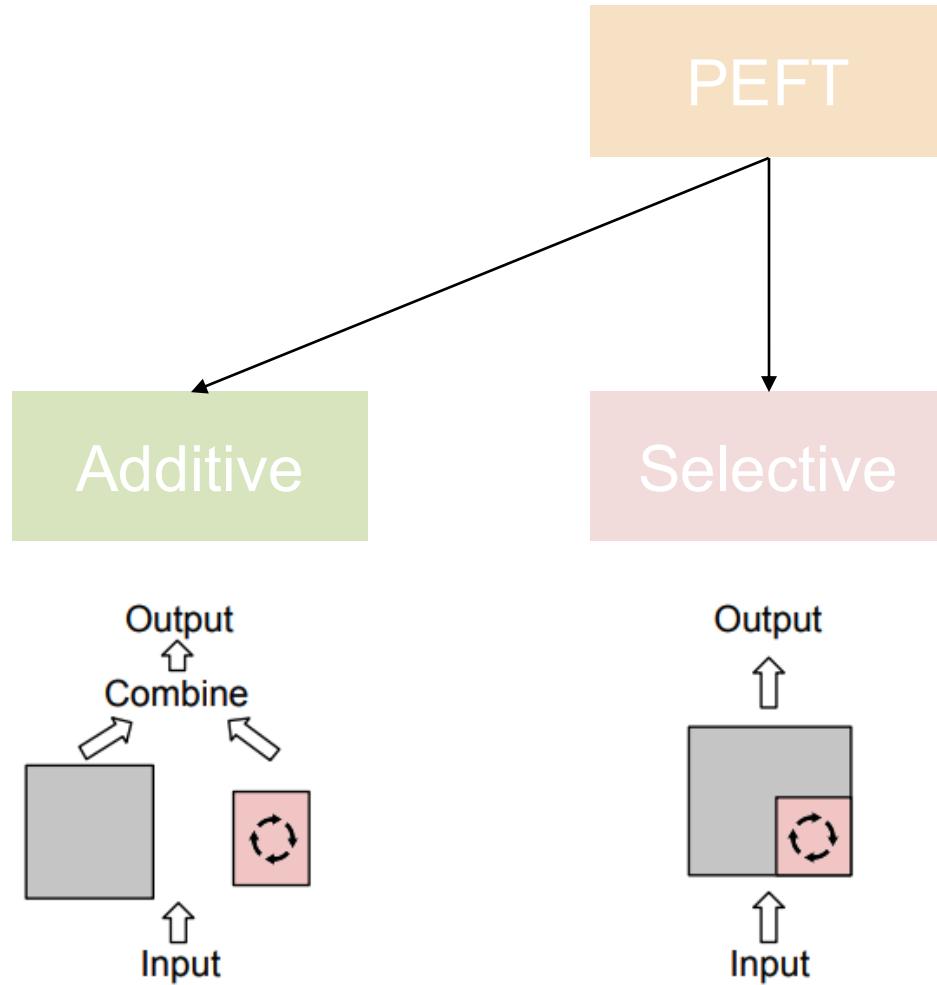
Size of LLMs



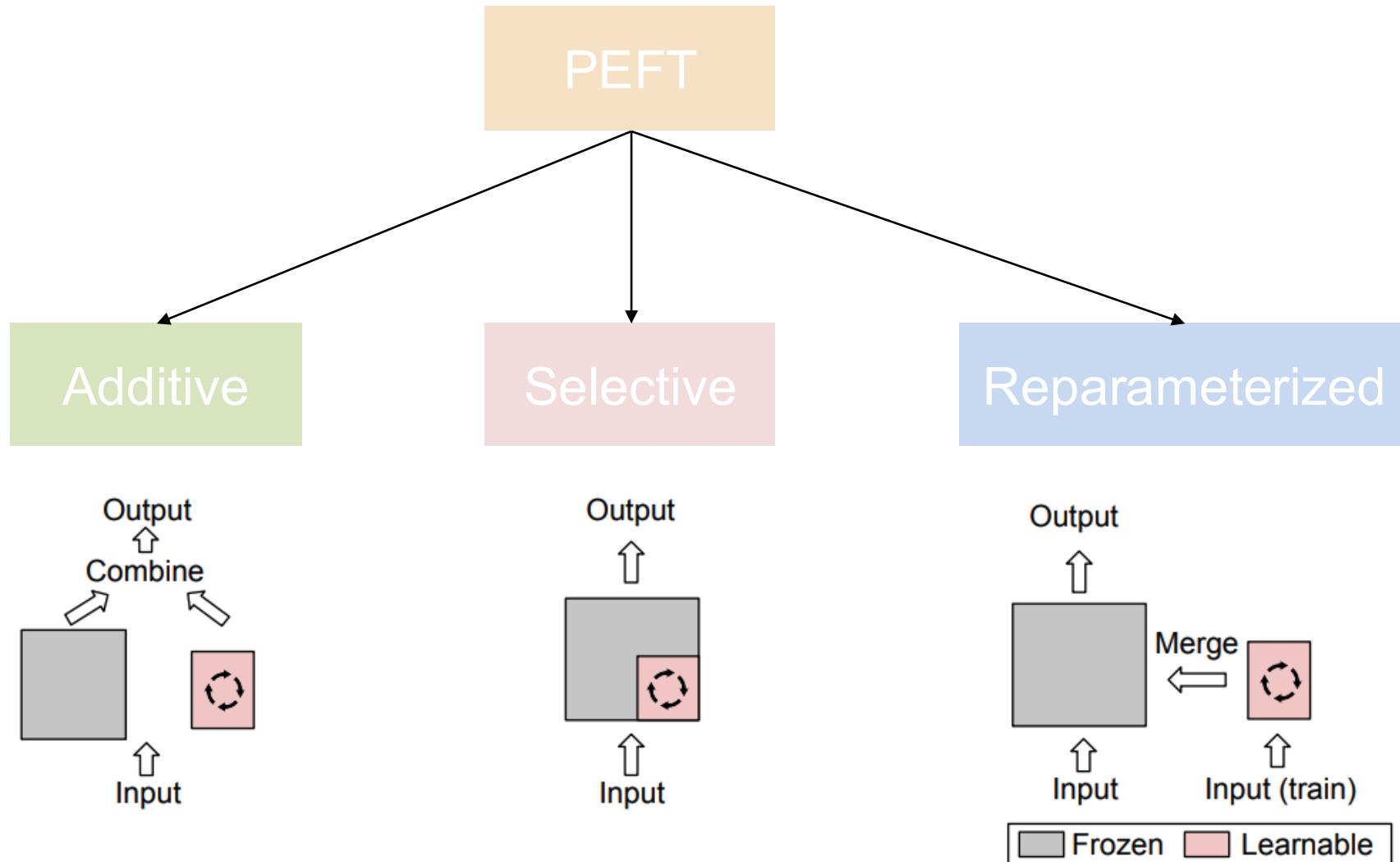
Parameter-Efficient Fine-Tuning (PEFT)



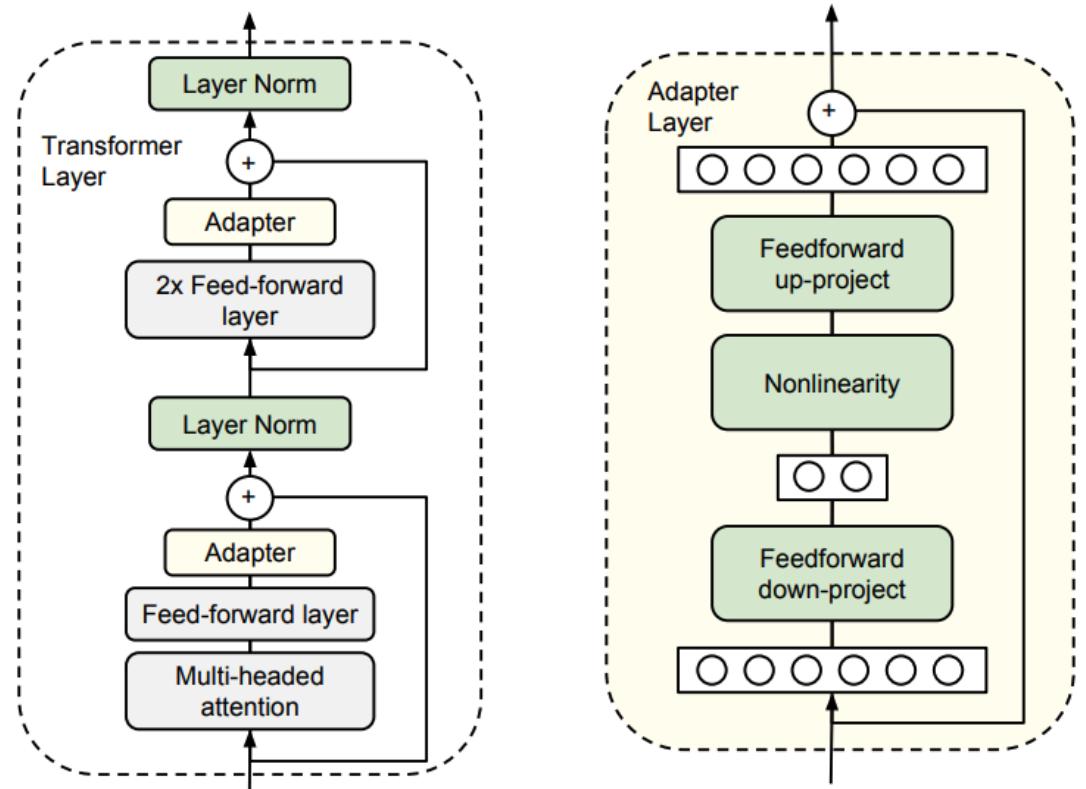
Parameter-Efficient Fine-Tuning (PEFT)



Parameter-Efficient Fine-Tuning (PEFT)

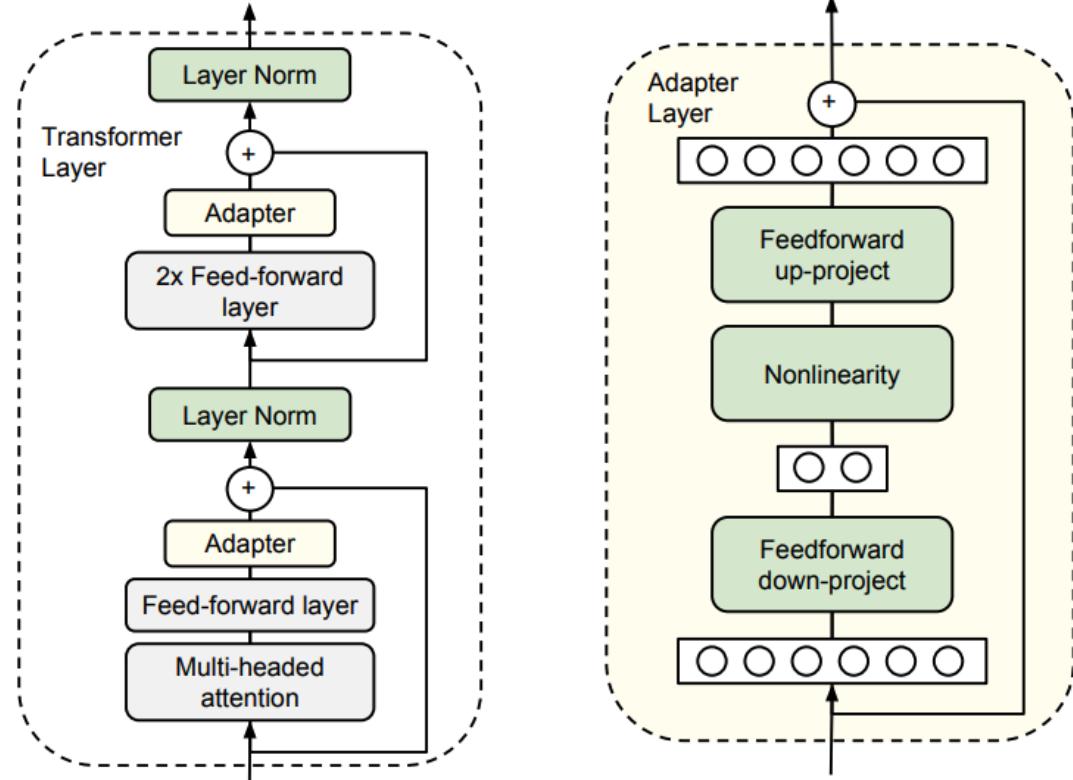


PEFT-Additive

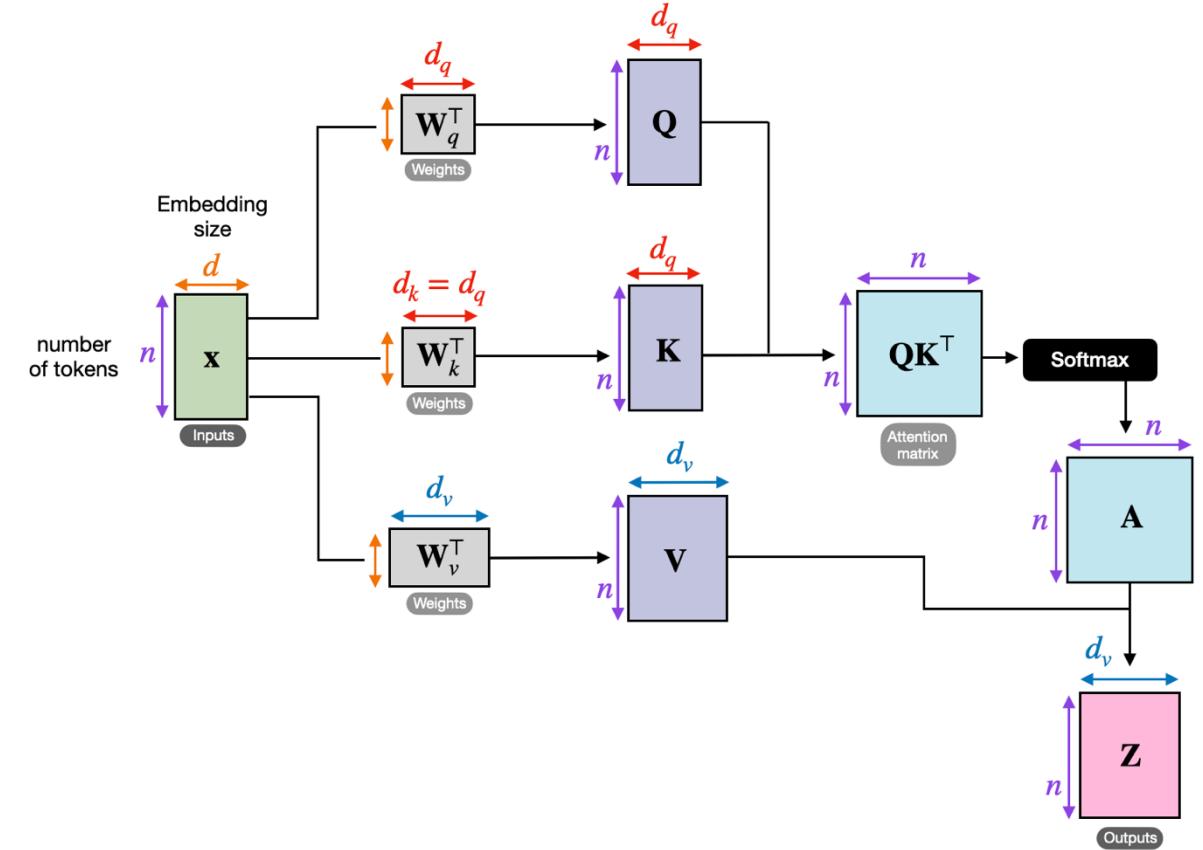


Adapter-based

PEFT-Additive

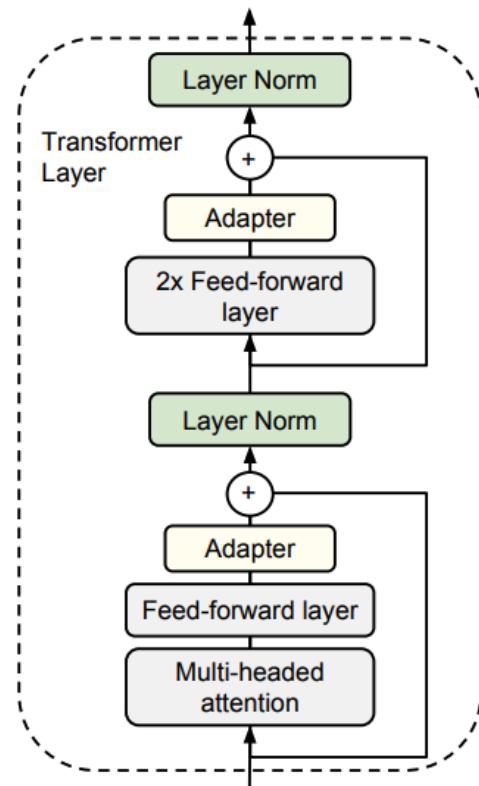


Adapter-based

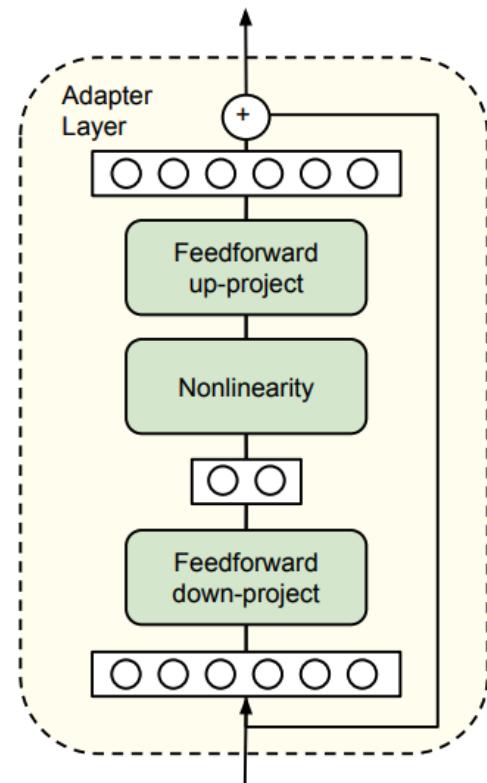


Prompt-based

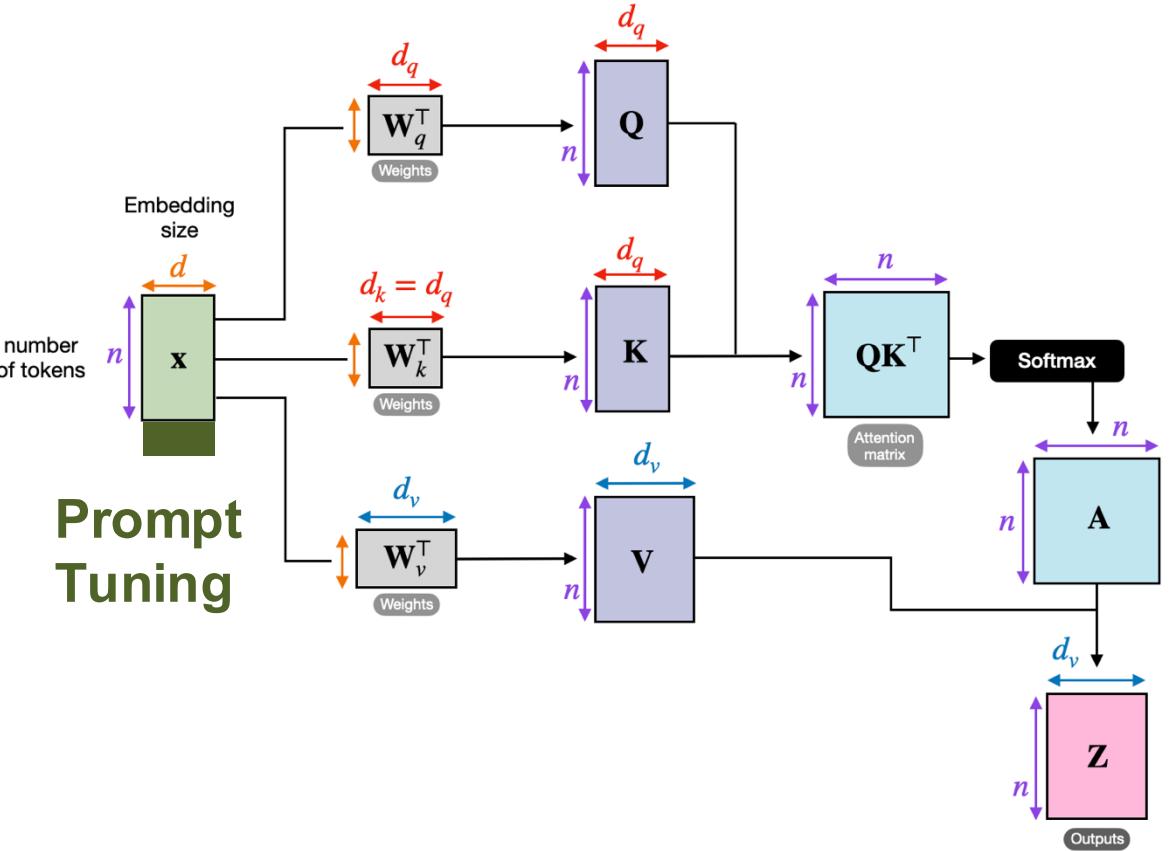
PEFT-Additive



Adapter-based

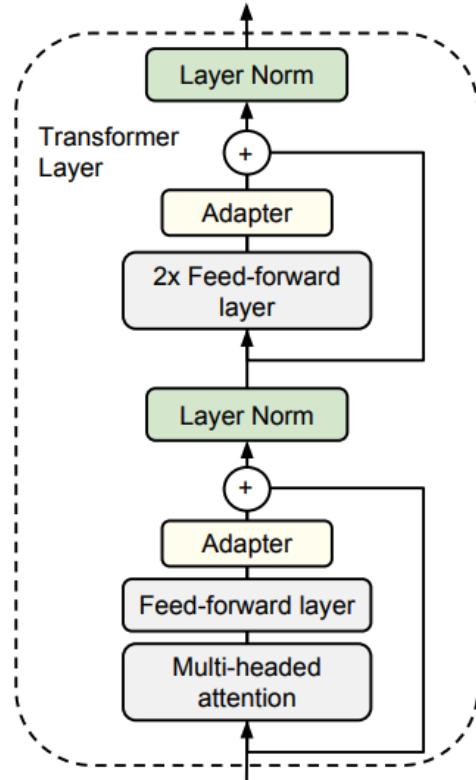


Prompt Tuning

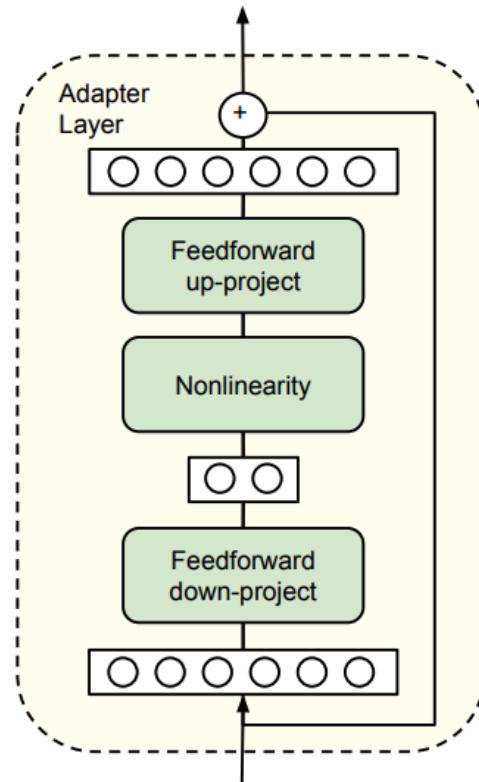


Prompt-based

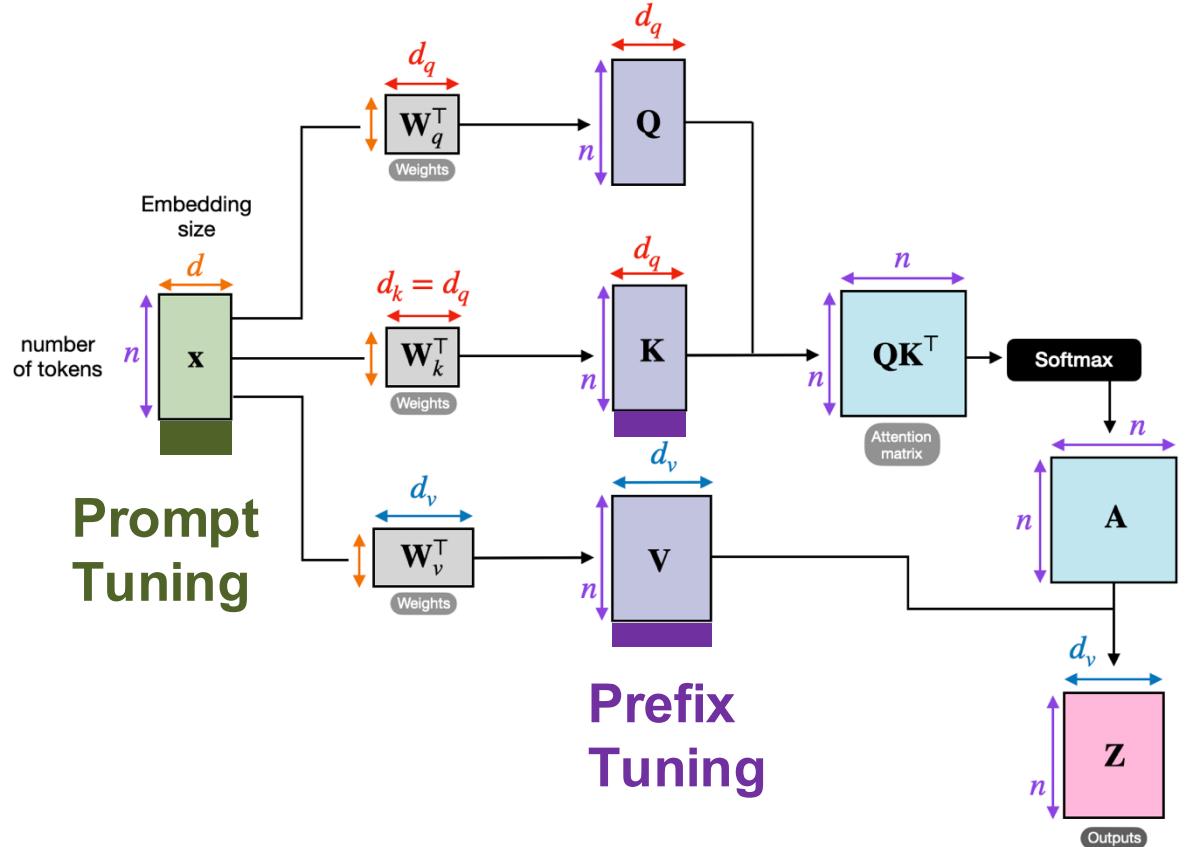
PEFT-Additive



Adapter-based

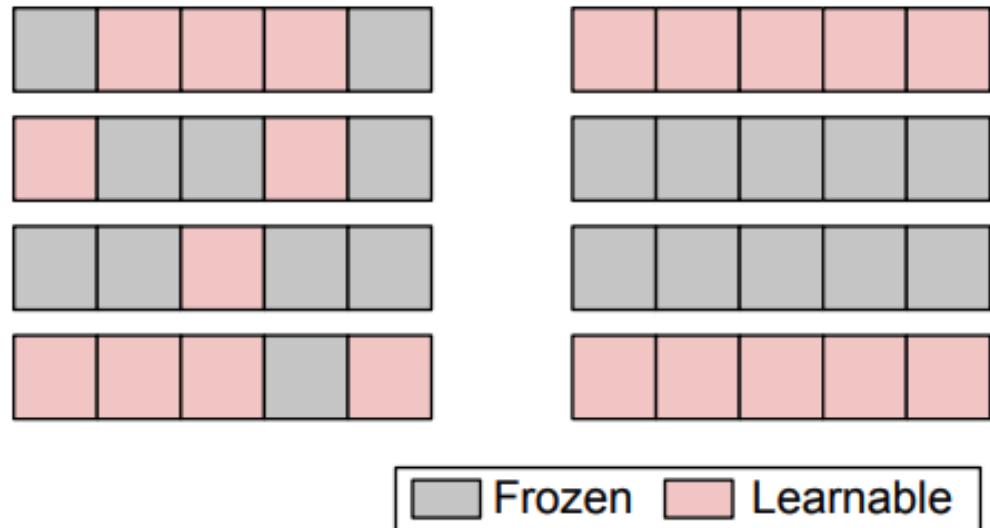


**Prompt
Tuning**



Prompt-based

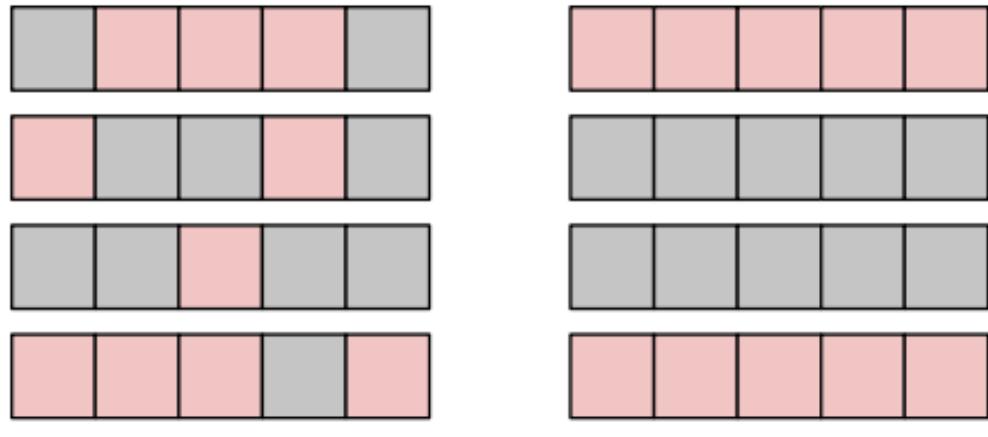
PEFT-Selective



Unstructural

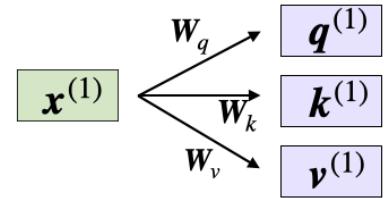
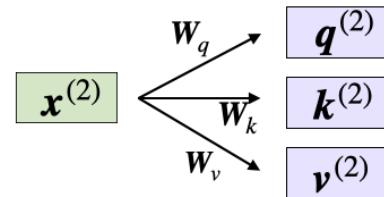
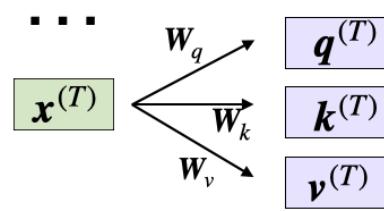
Structual

PEFT-Selective



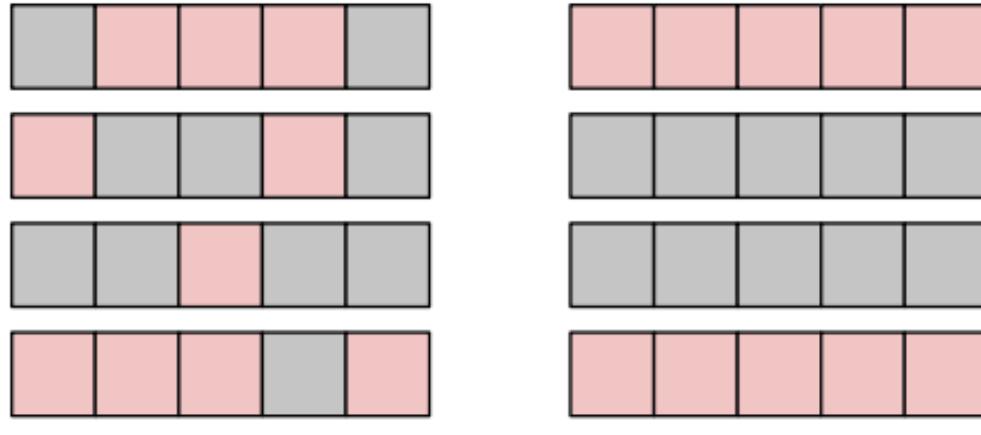
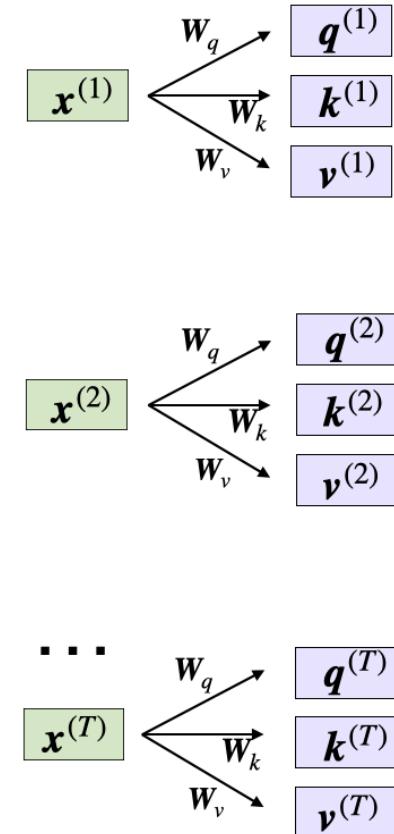
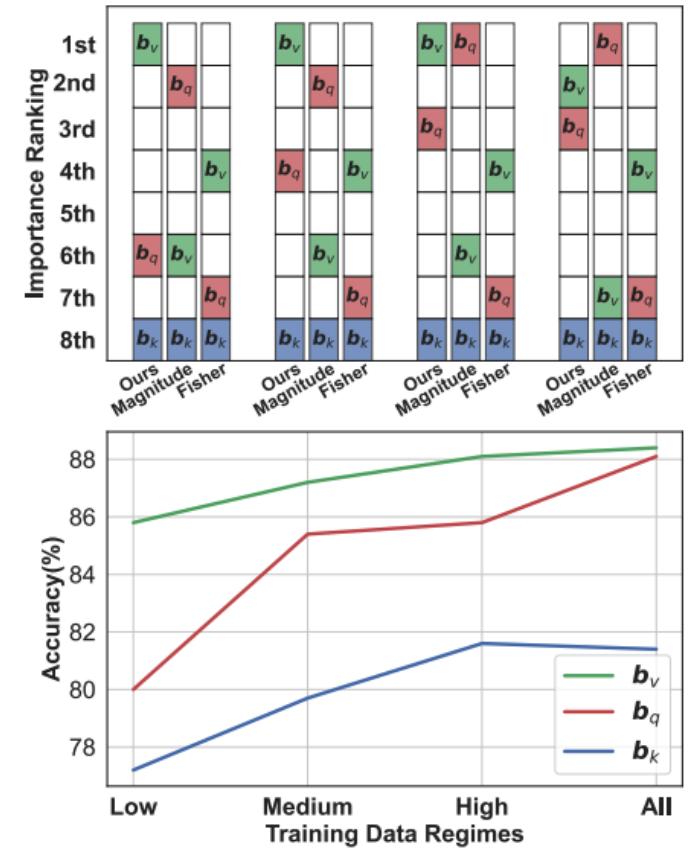
Unstructural

Structual



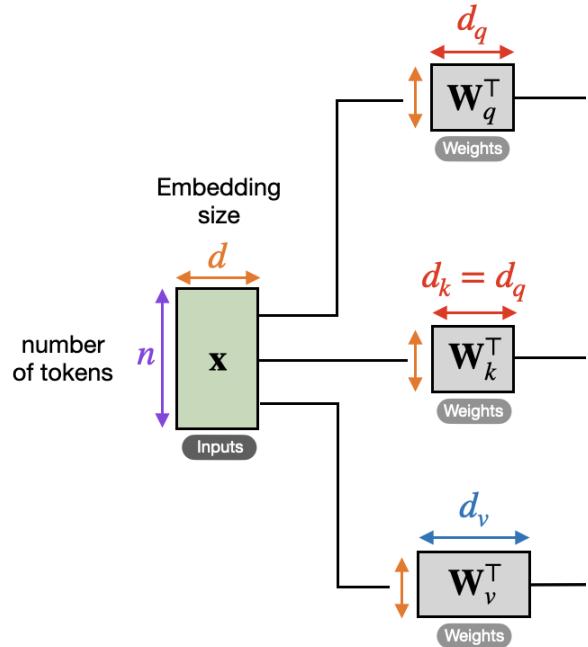
Example of structural

PEFT-Selective



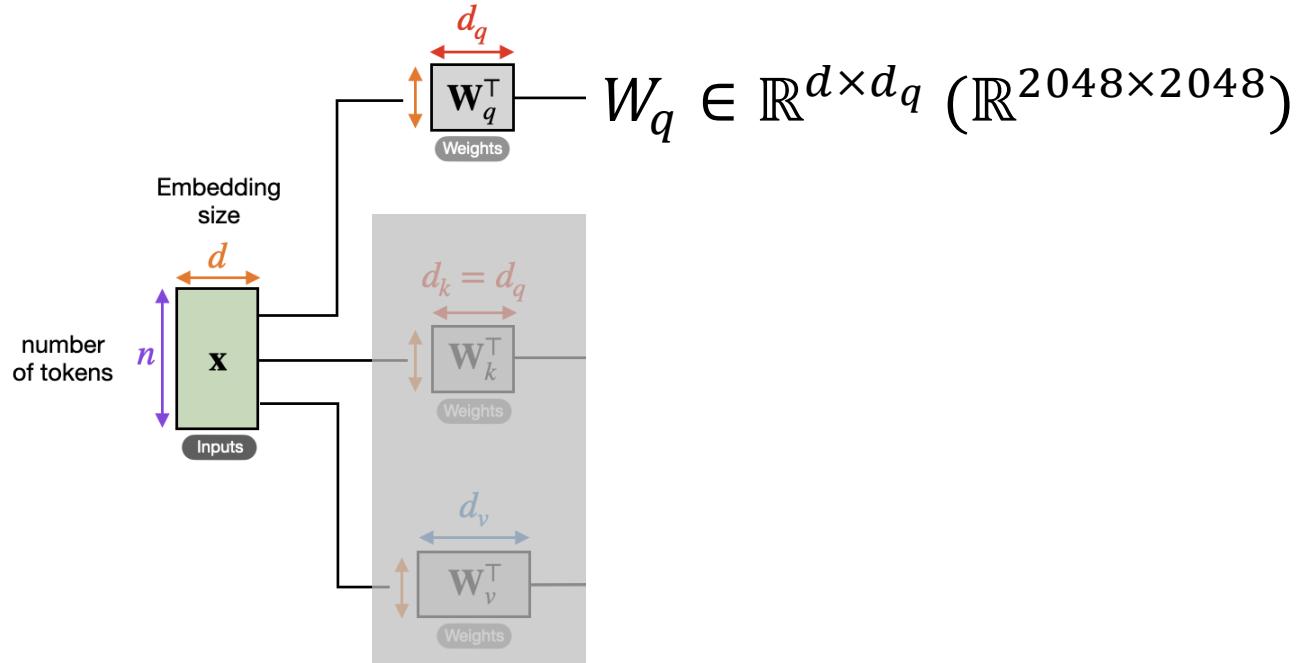
Example of structural

PEFT-Reparameterized



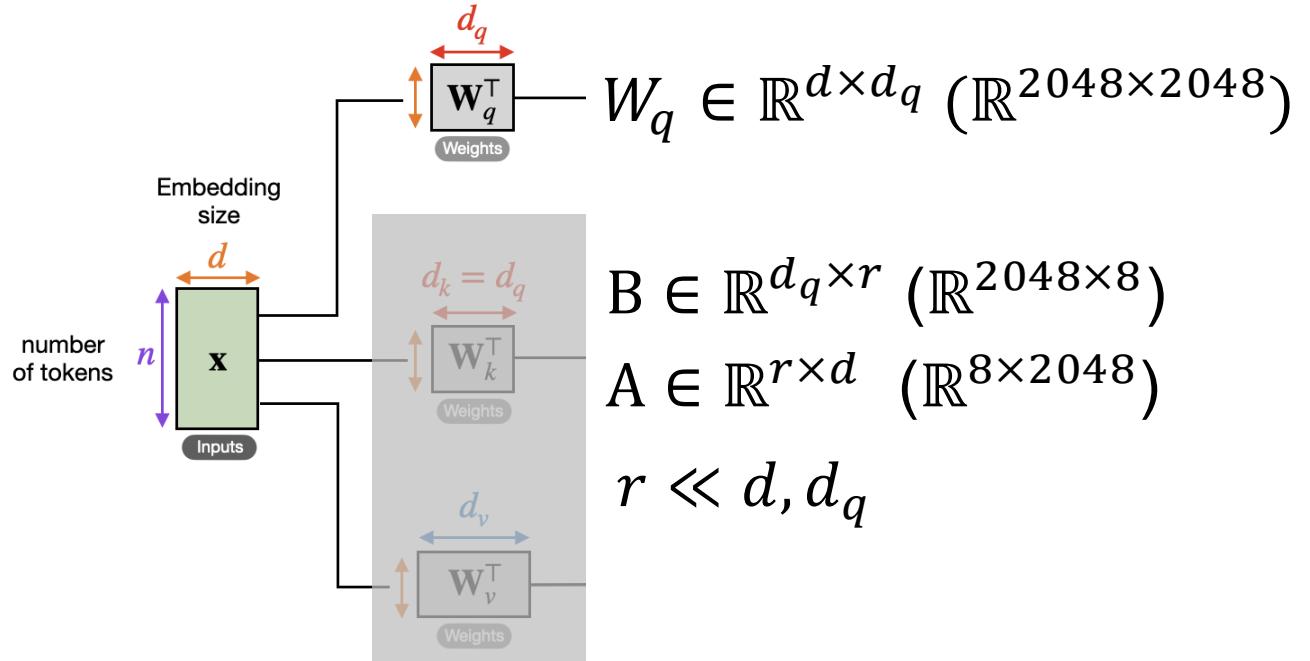
Low-Rank Decomposition

PEFT-Reparameterized



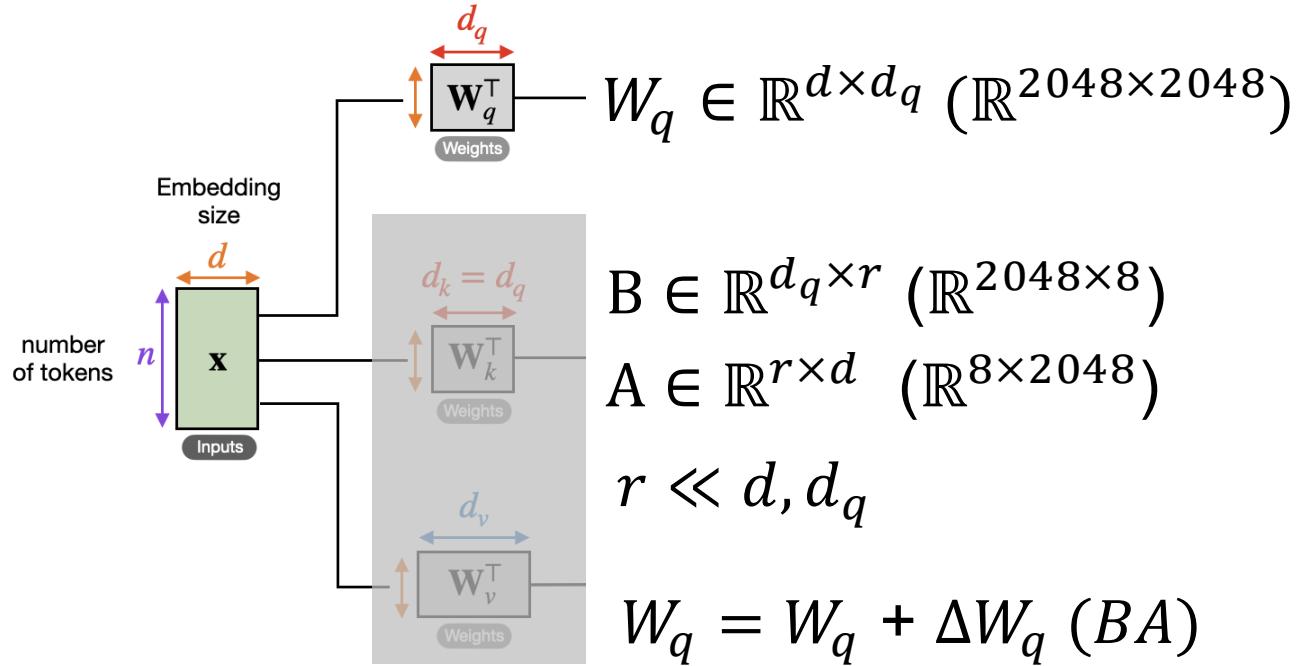
Low-Rank Decomposition

PEFT-Reparameterized



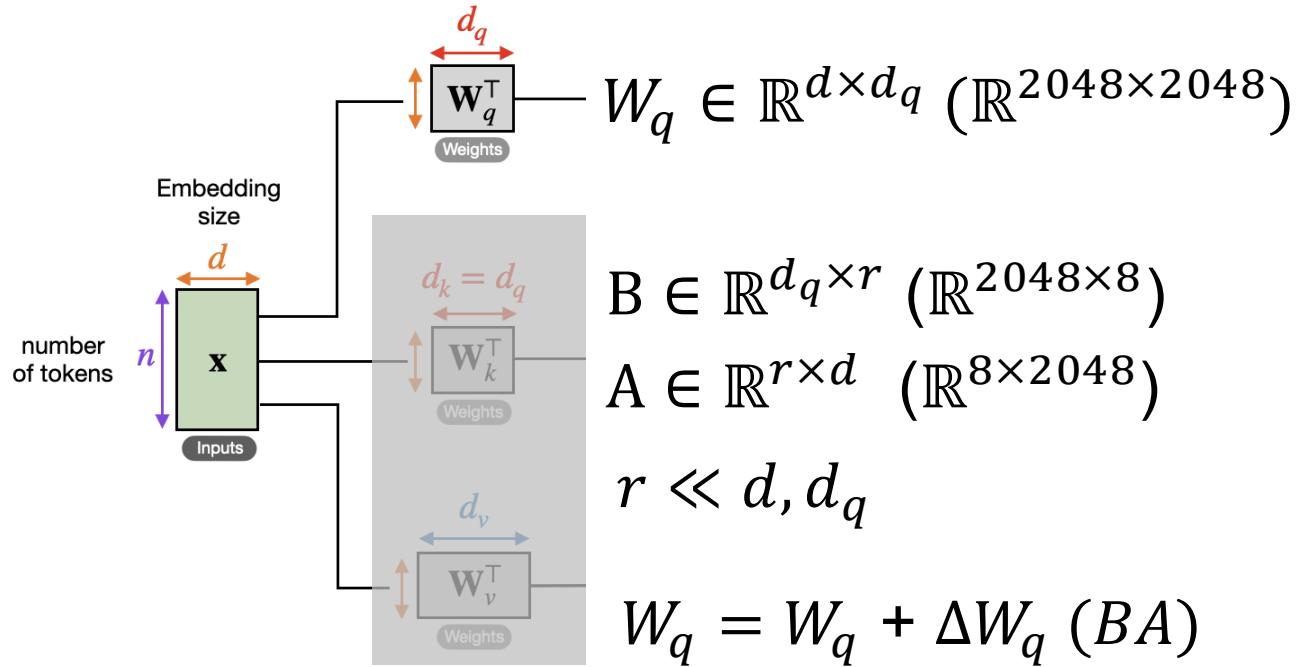
Low-Rank Decomposition

PEFT-Reparameterized

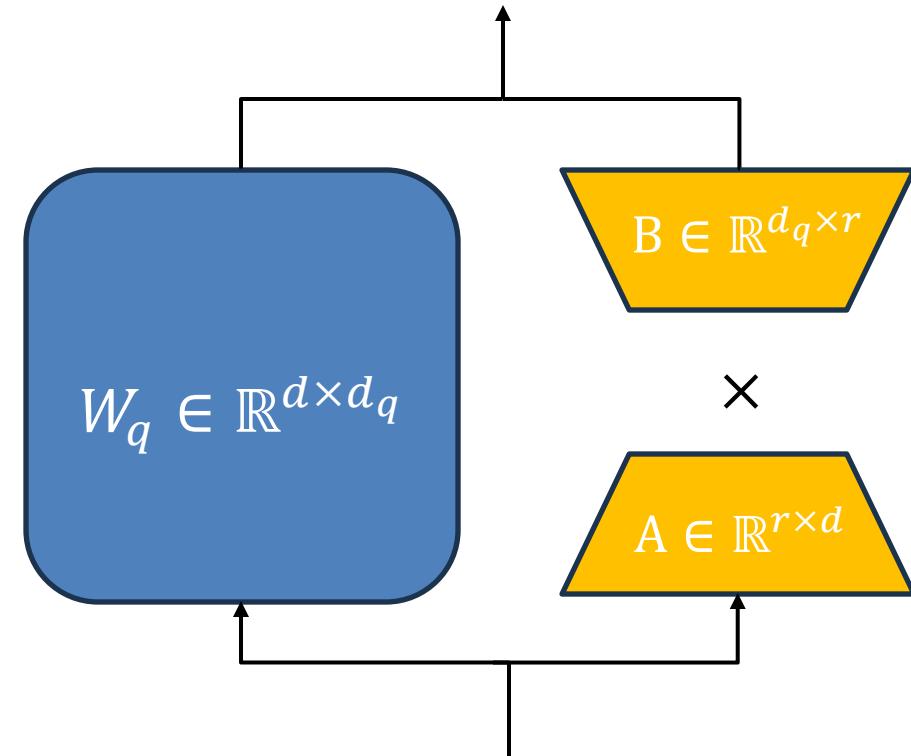


Low-Rank Decomposition

PEFT-Reparameterized

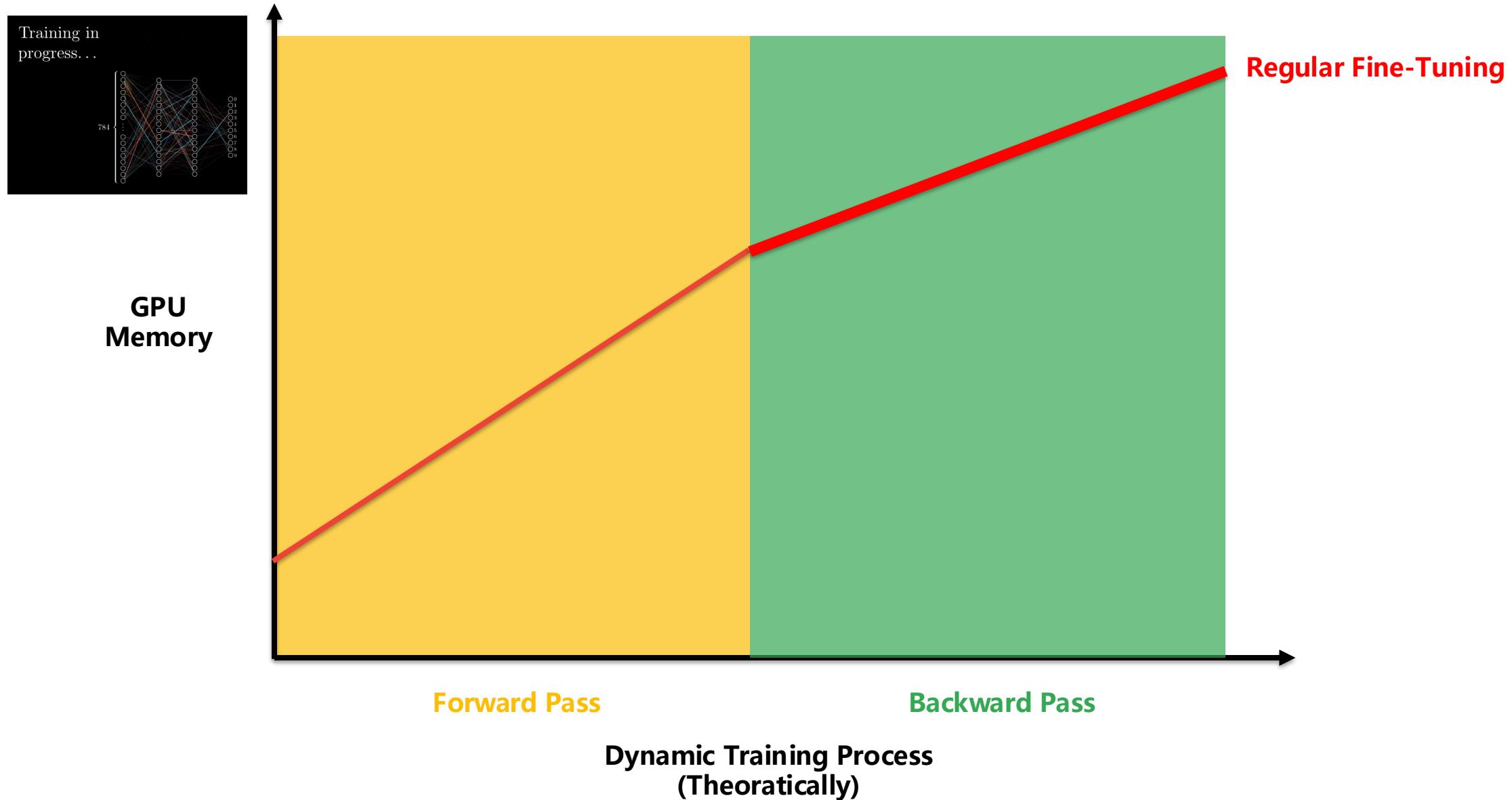


Low-Rank Decomposition

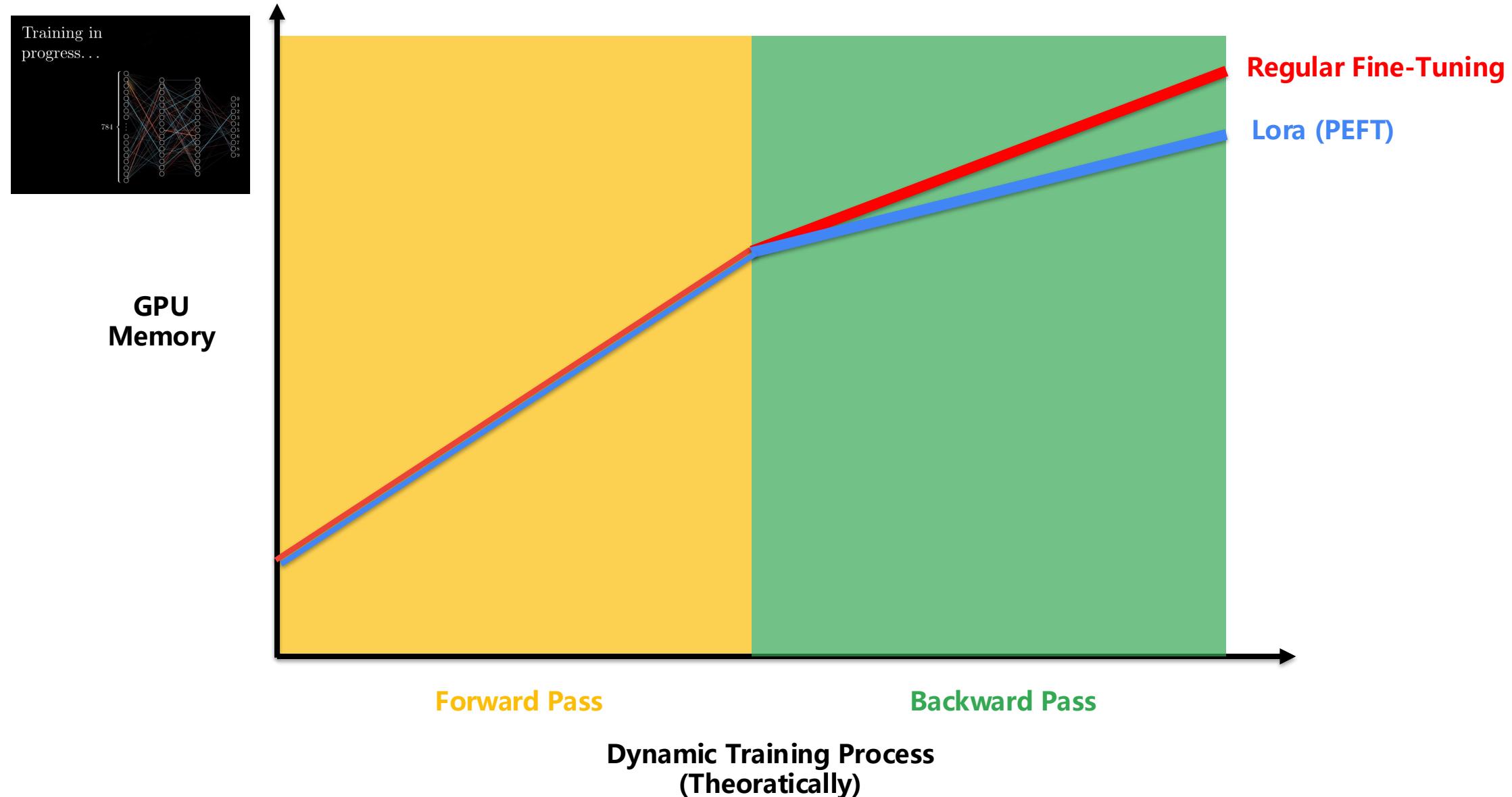


LoRA

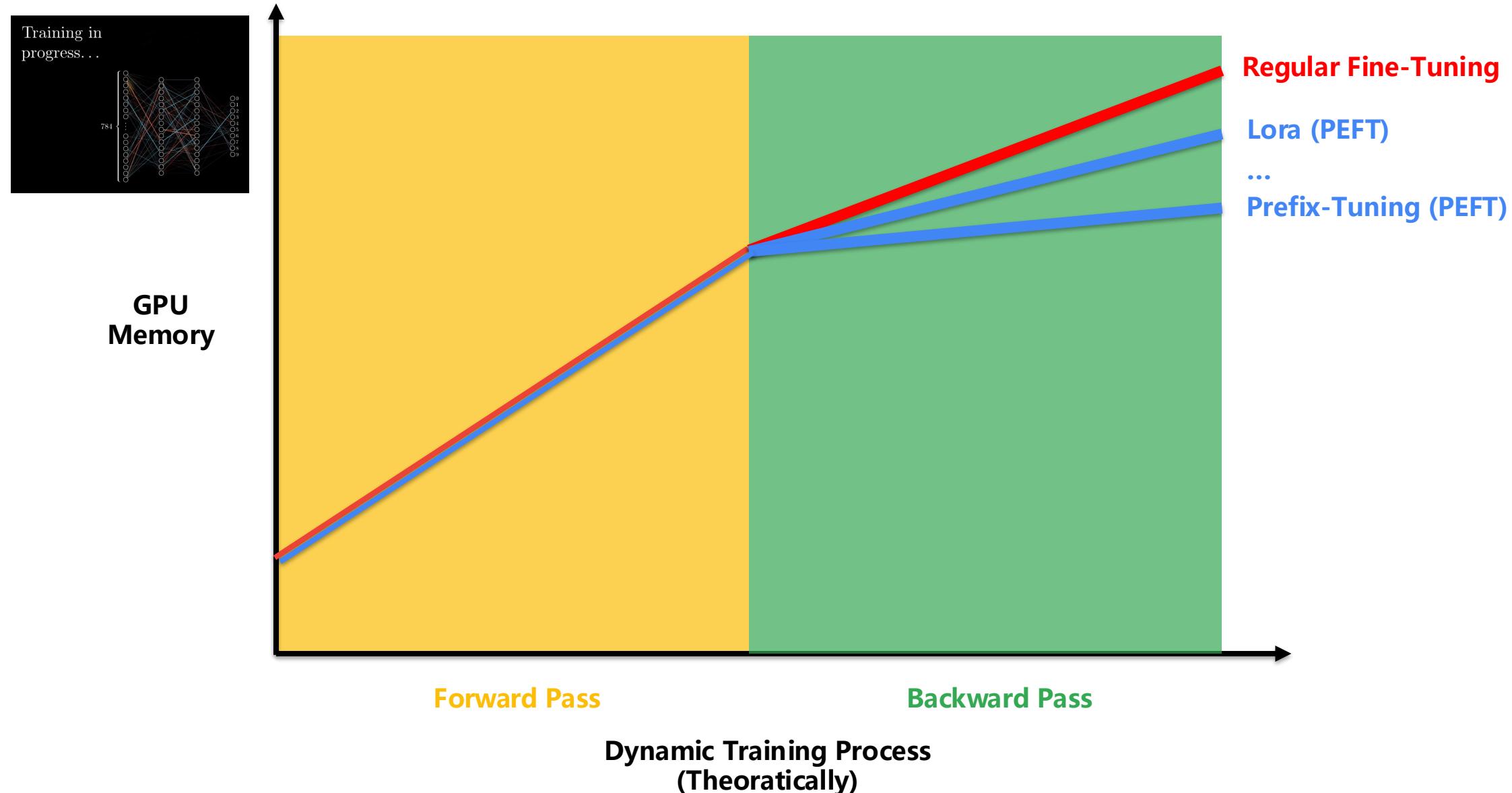
Parameter Efficiency Reduces Training Memory?



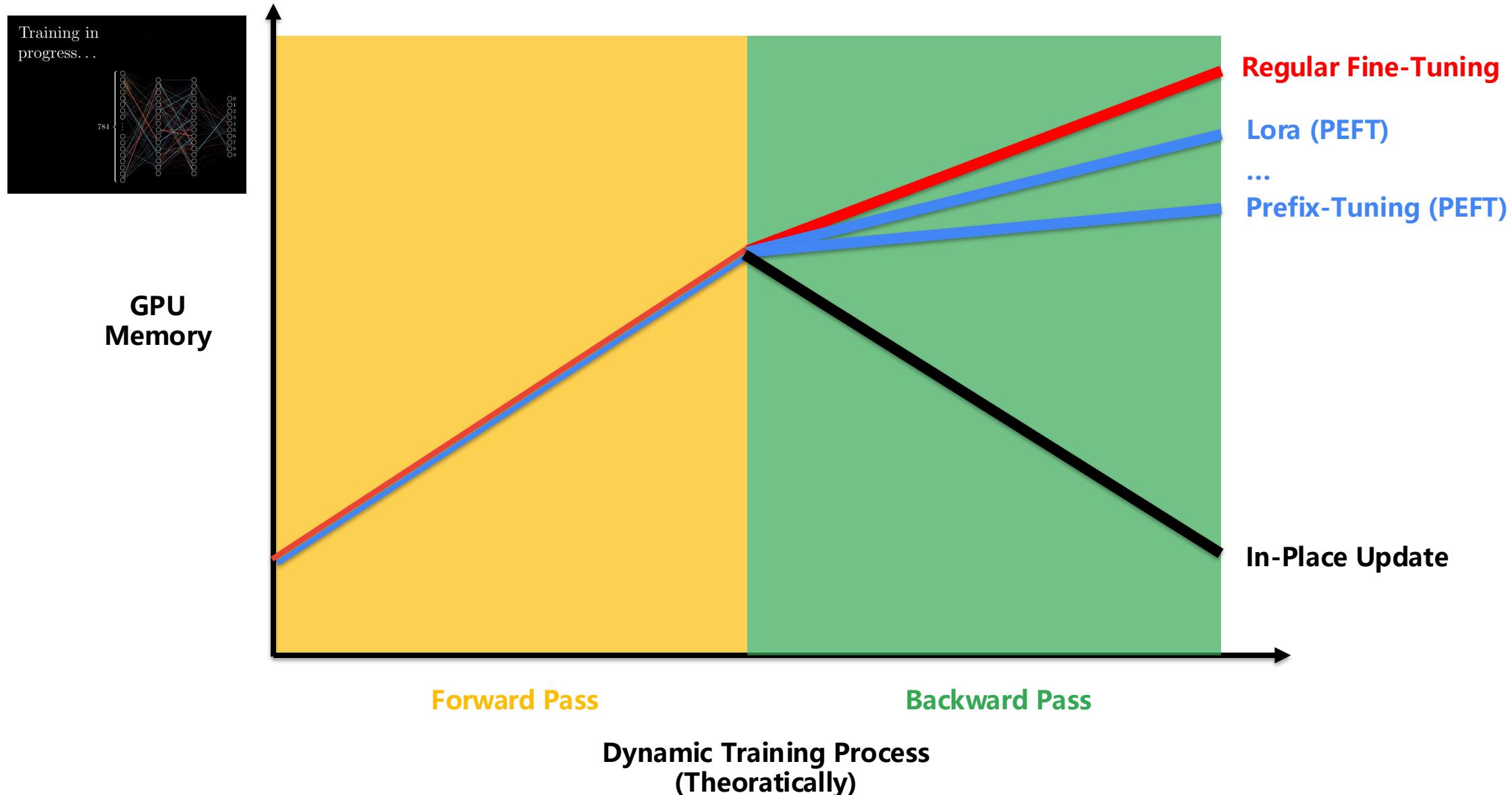
Parameter Efficiency Reduces Training Memory?



Parameter Efficiency Reduces Training Memory?



Parameter Efficiency Reduces Training Memory?



Memory Efficient Fine-Tuning-Pruning

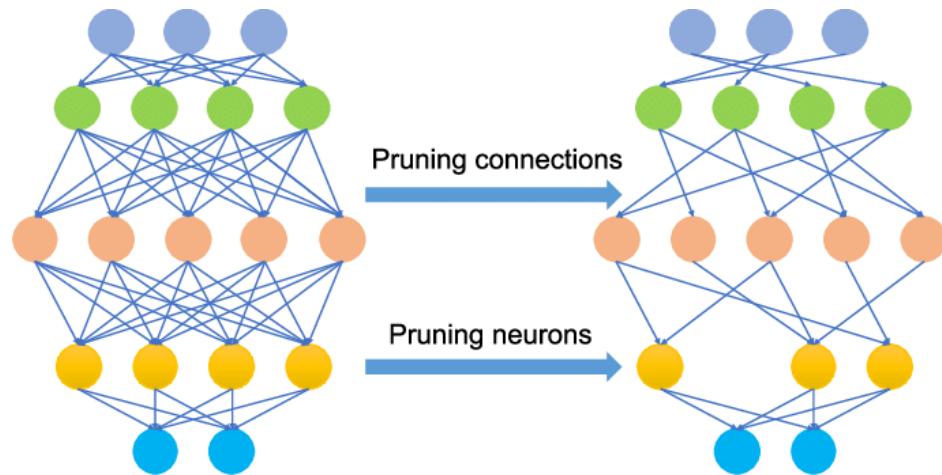
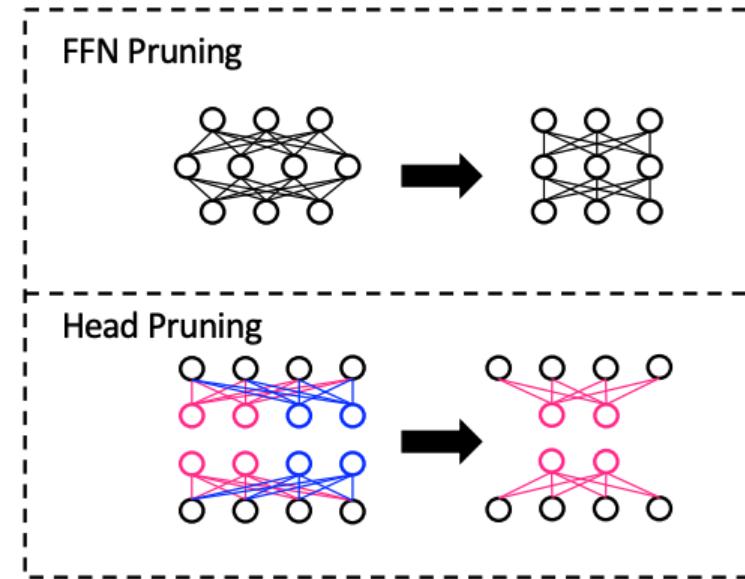


Han, Song, Huizi Mao, and William J. Dally. "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding." *ICLR*. 2016.

Gu, Naibin, et al. "Light-PEFT: Lightening Parameter-Efficient Fine-Tuning via Early Pruning." *Findings of the Association for Computational Linguistics ACL 2024*. 2024.

Wang, Yuxin, et al. "CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information." *Proceedings of the 31st International Conference on Computational Linguistics*. 2025.

Memory Efficient Fine-Tuning-Pruning

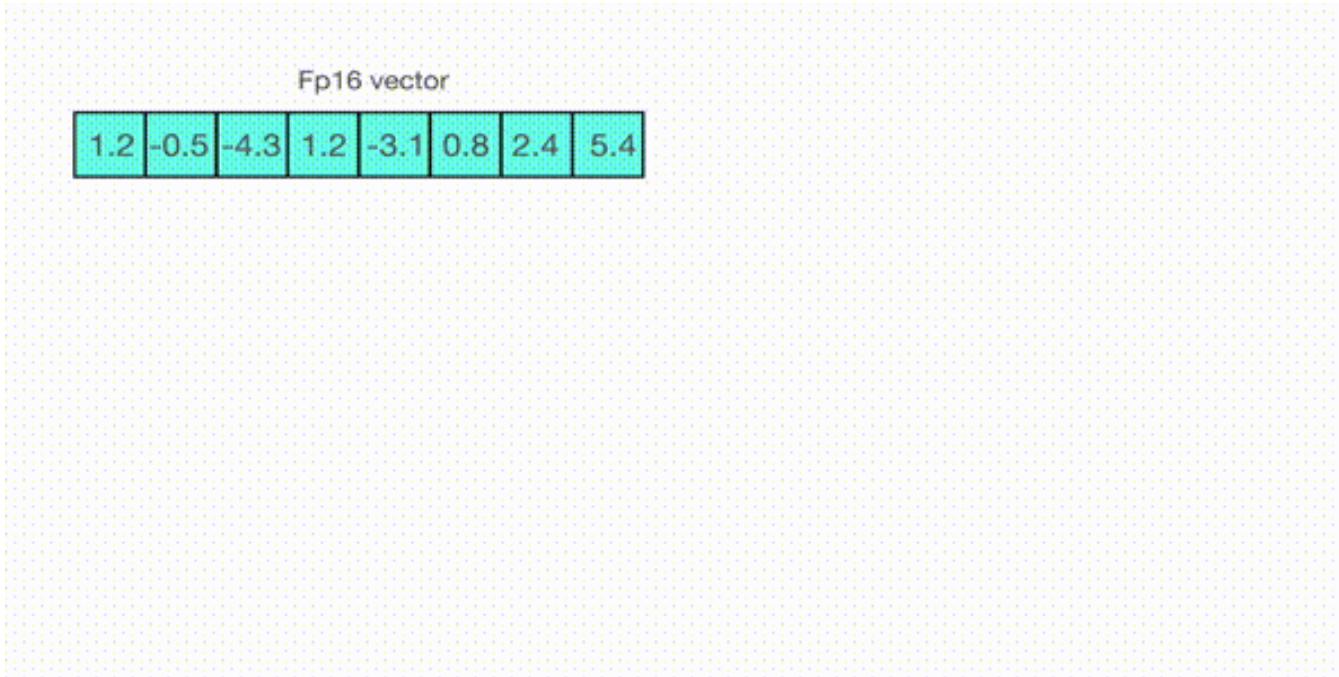


Han, Song, Huizi Mao, and William J. Dally. "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding." *ICLR*. 2016.

Gu, Naibin, et al. "Light-PEFT: Lightening Parameter-Efficient Fine-Tuning via Early Pruning." *Findings of the Association for Computational Linguistics ACL 2024*. 2024.

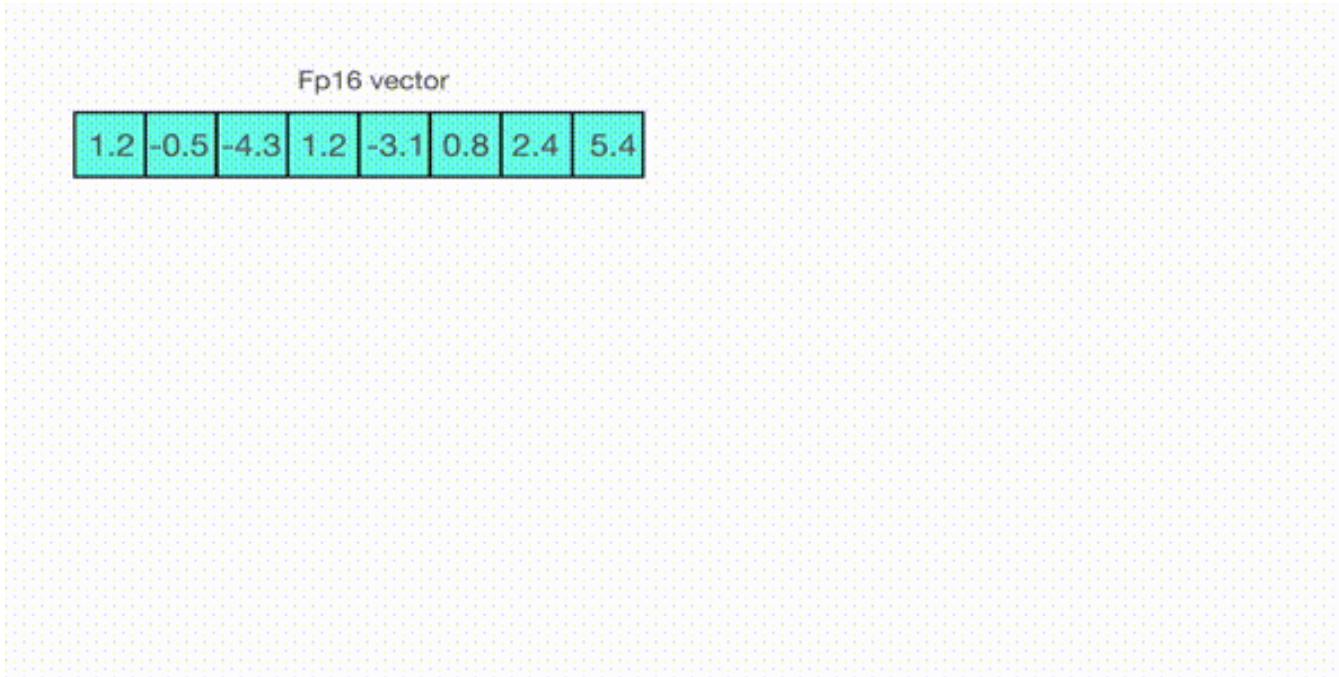
Wang, Yuxin, et al. "CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information." *Proceedings of the 31st International Conference on Computational Linguistics*. 2025.

Memory Efficient Fine-Tuning-Quantization

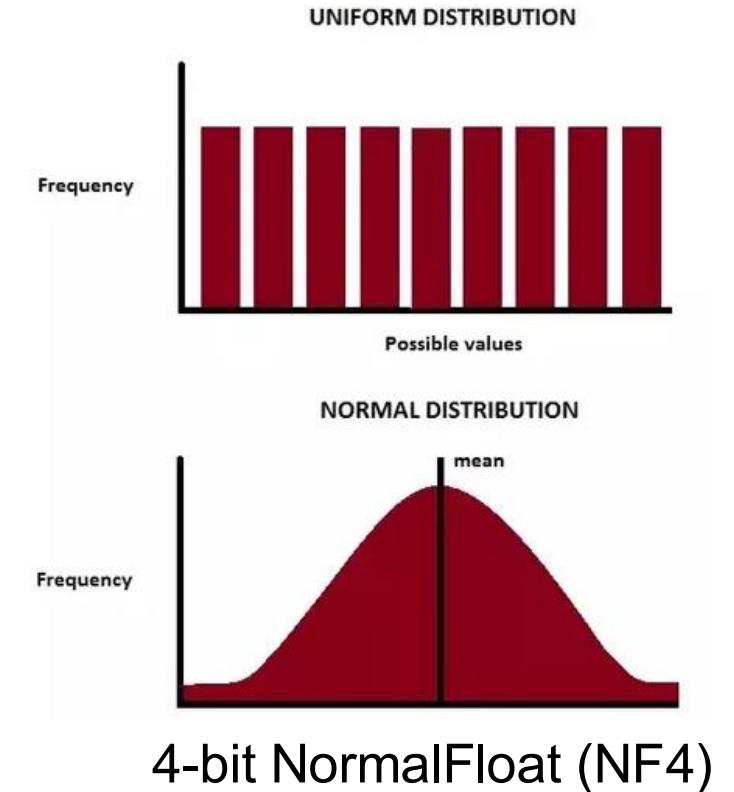


Quantization

Memory Efficient Fine-Tuning-Quantization

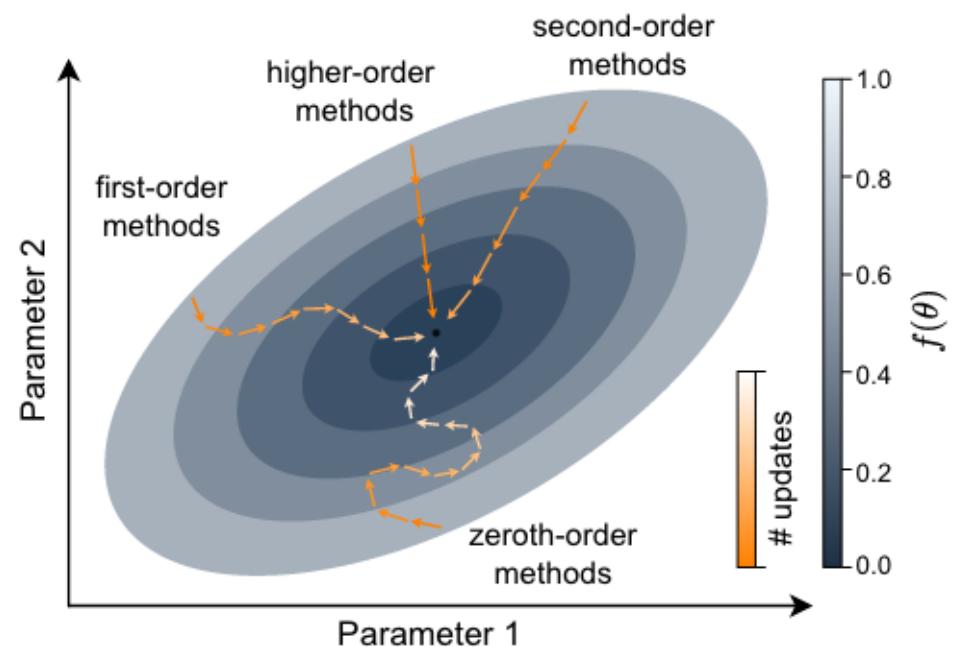


Quantization



QLoRA

Memory Efficient Fine-Tuning-Zeroth-Order Gradient

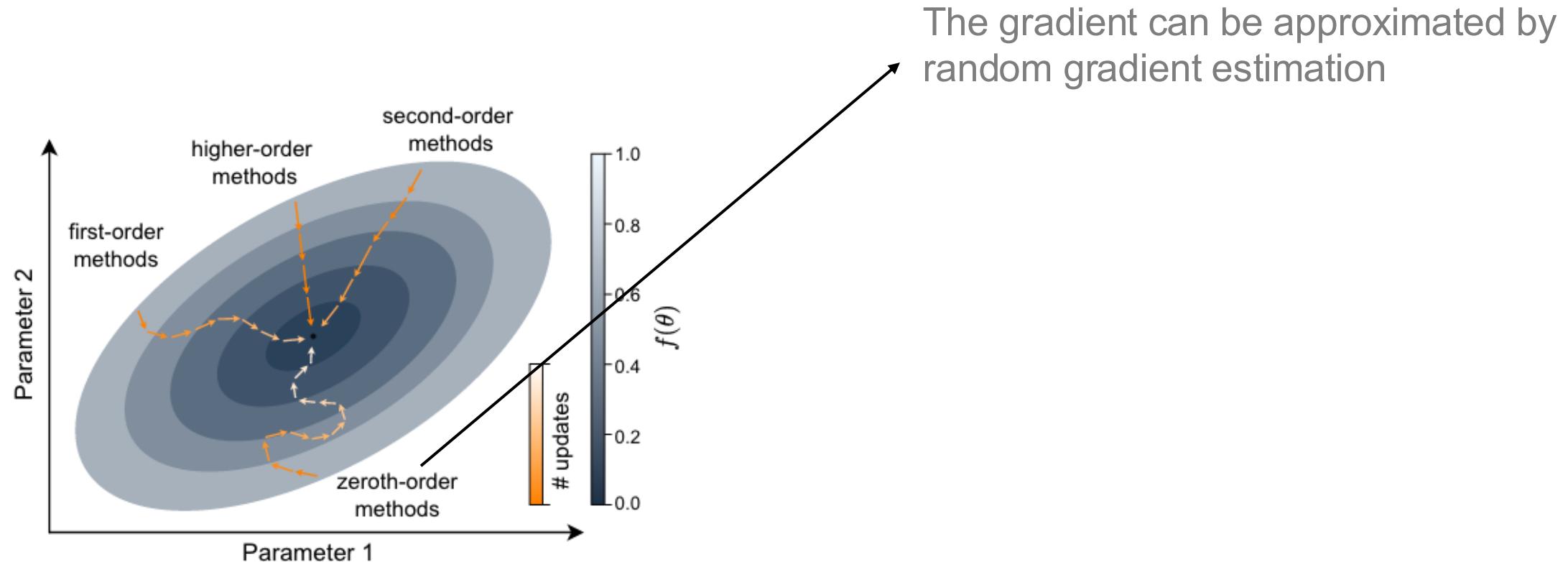


Zhang, Yihua, et al. "Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: a benchmark." *Proceedings of the 41st International Conference on Machine Learning*. 2024.

Fernández, Jesús García, Nasir Ahmad, and Marcel van Gerven. "A Unified Perspective on Optimization in Machine Learning and Neuroscience: From Gradient Descent to Neural Adaptation." *arXiv preprint arXiv:2510.18812* (2025).

<https://sites.google.com/view/zo-tutorial-aaai-2024/>

Memory Efficient Fine-Tuning-Zeroth-Order Gradient



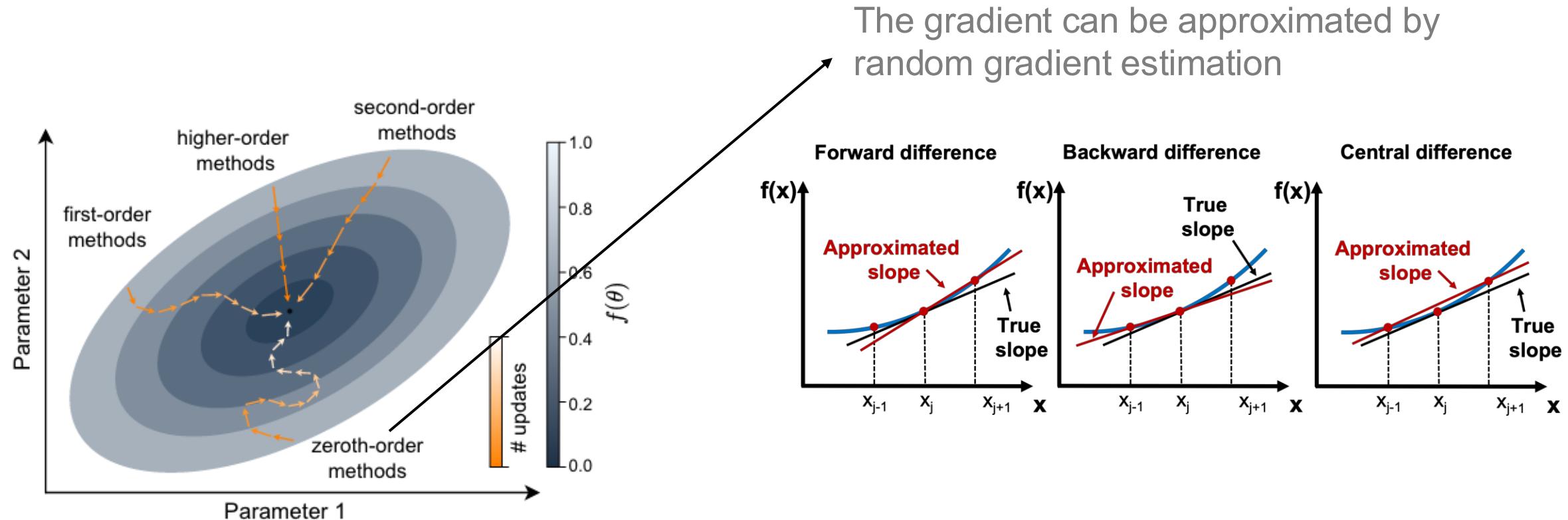
The gradient can be approximated by random gradient estimation

Zhang, Yihua, et al. "Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: a benchmark." *Proceedings of the 41st International Conference on Machine Learning*. 2024.

Fernández, Jesús García, Nasir Ahmad, and Marcel van Gerven. "A Unified Perspective on Optimization in Machine Learning and Neuroscience: From Gradient Descent to Neural Adaptation." *arXiv preprint arXiv:2510.18812* (2025).

<https://sites.google.com/view/zo-tutorial-aaai-2024/>

Memory Efficient Fine-Tuning-Zeroth-Order Gradient

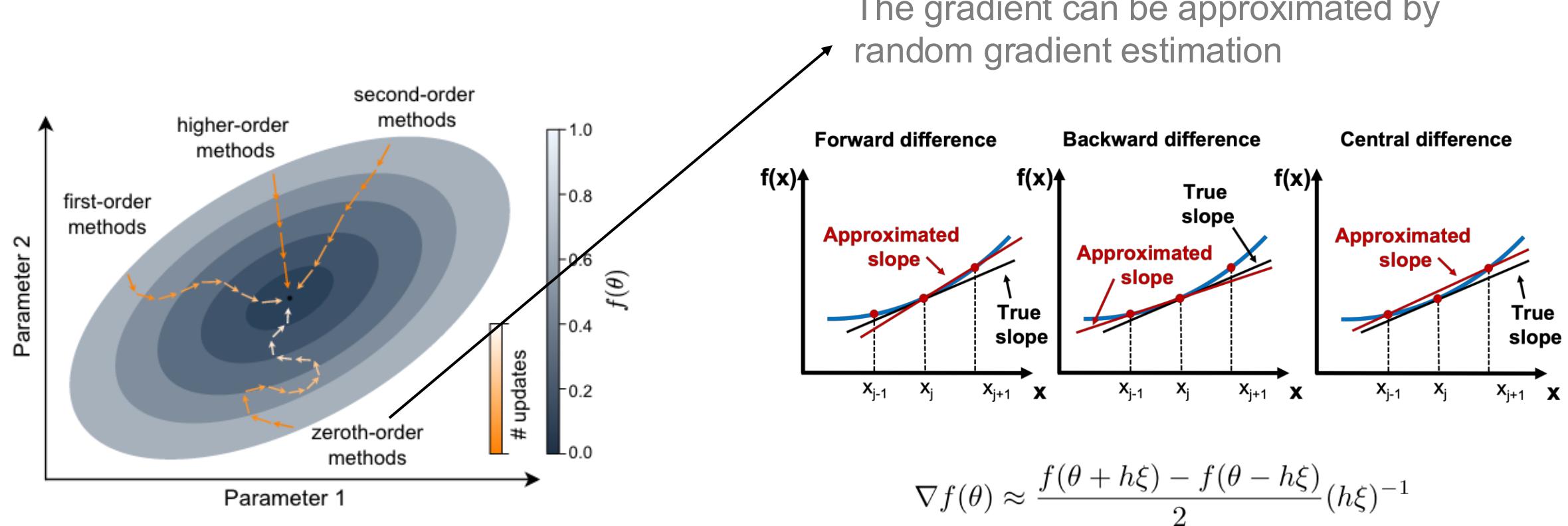


Zhang, Yihua, et al. "Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: a benchmark." *Proceedings of the 41st International Conference on Machine Learning*. 2024.

Fernández, Jesús García, Nasir Ahmad, and Marcel van Gerven. "A Unified Perspective on Optimization in Machine Learning and Neuroscience: From Gradient Descent to Neural Adaptation." *arXiv preprint arXiv:2510.18812* (2025).

<https://sites.google.com/view/zo-tutorial-aaai-2024/>

Memory Efficient Fine-Tuning-Zeroth-Order Gradient



Zhang, Yihua, et al. "Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: a benchmark." *Proceedings of the 41st International Conference on Machine Learning*. 2024.

Fernández, Jesús García, Nasir Ahmad, and Marcel van Gerven. "A Unified Perspective on Optimization in Machine Learning and Neuroscience: From Gradient Descent to Neural Adaptation." *arXiv preprint arXiv:2510.18812* (2025).

<https://sites.google.com/view/zo-tutorial-aaai-2024/>

Without Resources for Any Fine-Tuning

Prompt Engineering

Classify the sentiment of the following sentence as positive or negative:
"I love this movie!"

Without Resources for Any Fine-Tuning

Prompt Engineering

Classify the sentiment of the following sentence as positive or negative:
"I love this movie!"

In-Context Learning

Review: "It was amazing!" → Label: Positive
Review: "Too boring." → Label: Negative
Review: "I loved the actors!" → Label:

Without Resources for Any Fine-Tuning

Prompt Engineering

Classify the sentiment of the following sentence as positive or negative:
"I love this movie!"

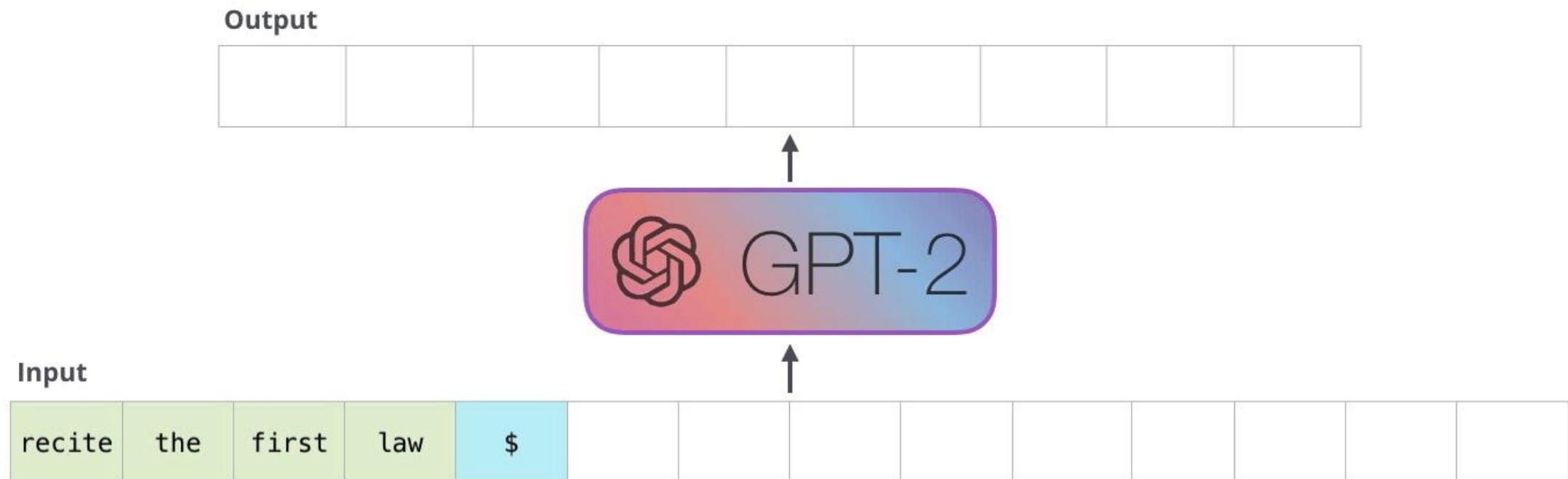
In-Context Learning

Review: "It was amazing!" → Label: Positive
Review: "Too boring." → Label: Negative
Review: "I loved the actors!" → Label:

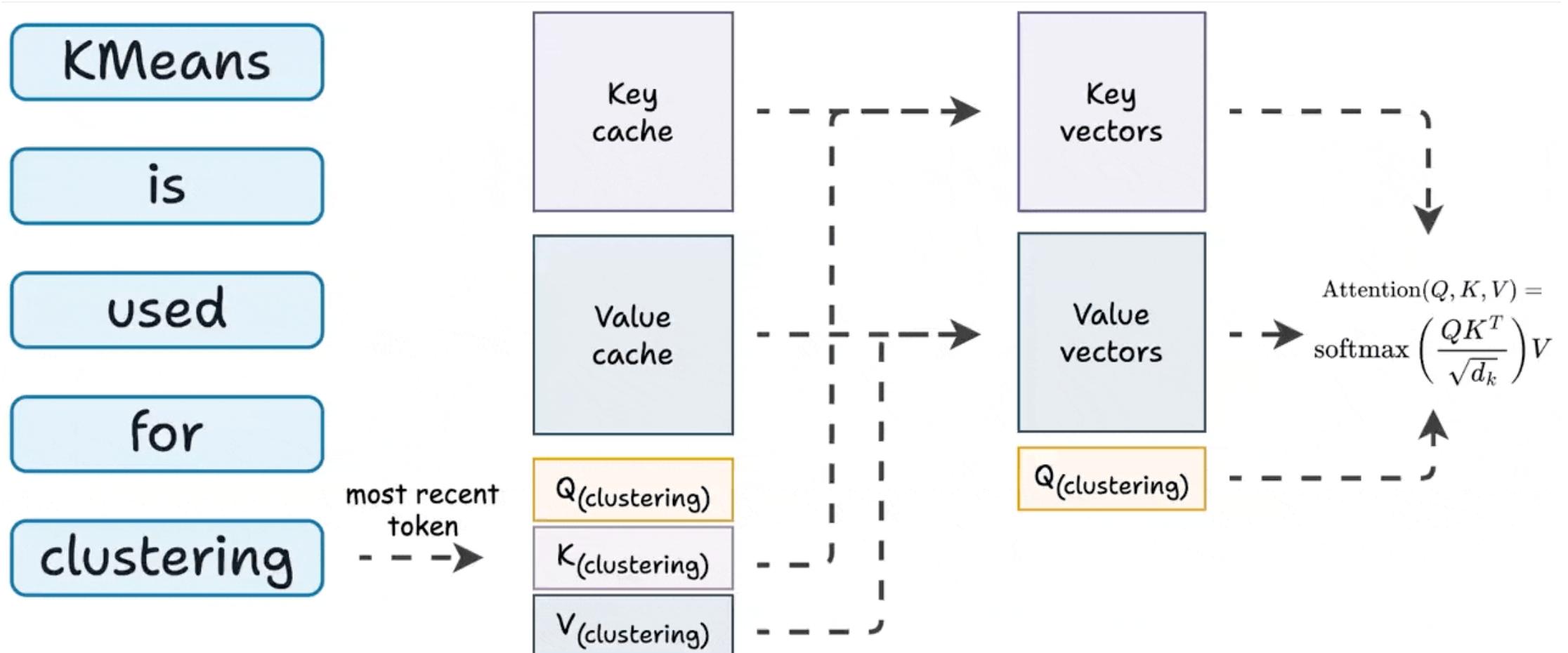
Retrieval-Augmented Generation (RAG)

Query: What is photosynthesis?
↓
Retrieved: "Photosynthesis is the process by which green plants..."
↓
LLM: "Photosynthesis is the process used by plants..."

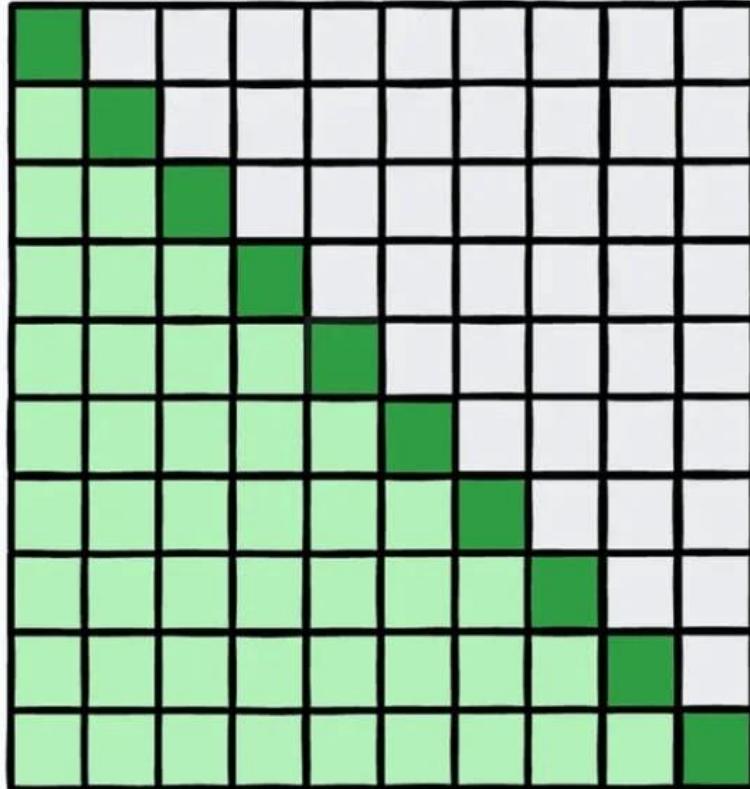
Inference for LLMS (Generation Task)



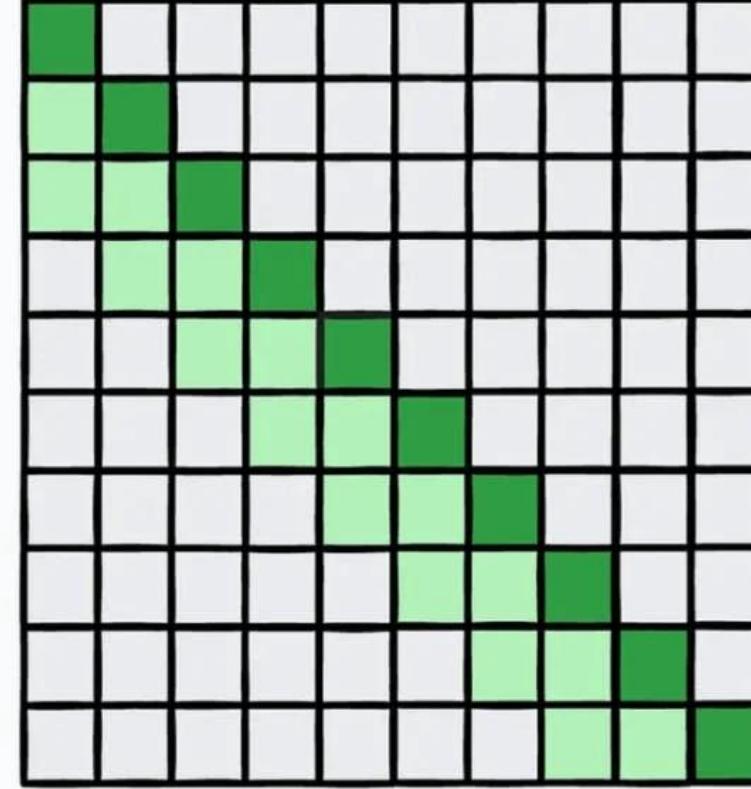
Efficient Inference for LLMs-KV Cache



Efficient Inference for LLMs-Sparse Attention



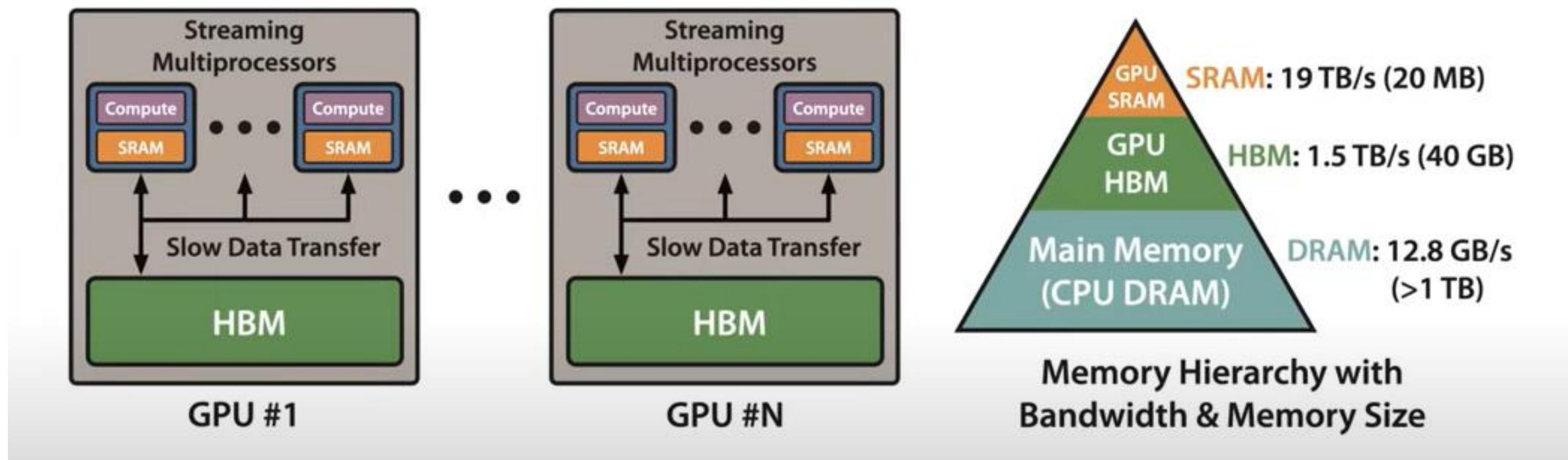
Quadratic attention, computes attention scores for every pair of token



Sparse attention, computes attention scores only for nearby tokens

Efficient Inference for LLMs-Flash Attention

Background: GPU Compute Model & Memory Hierarchy

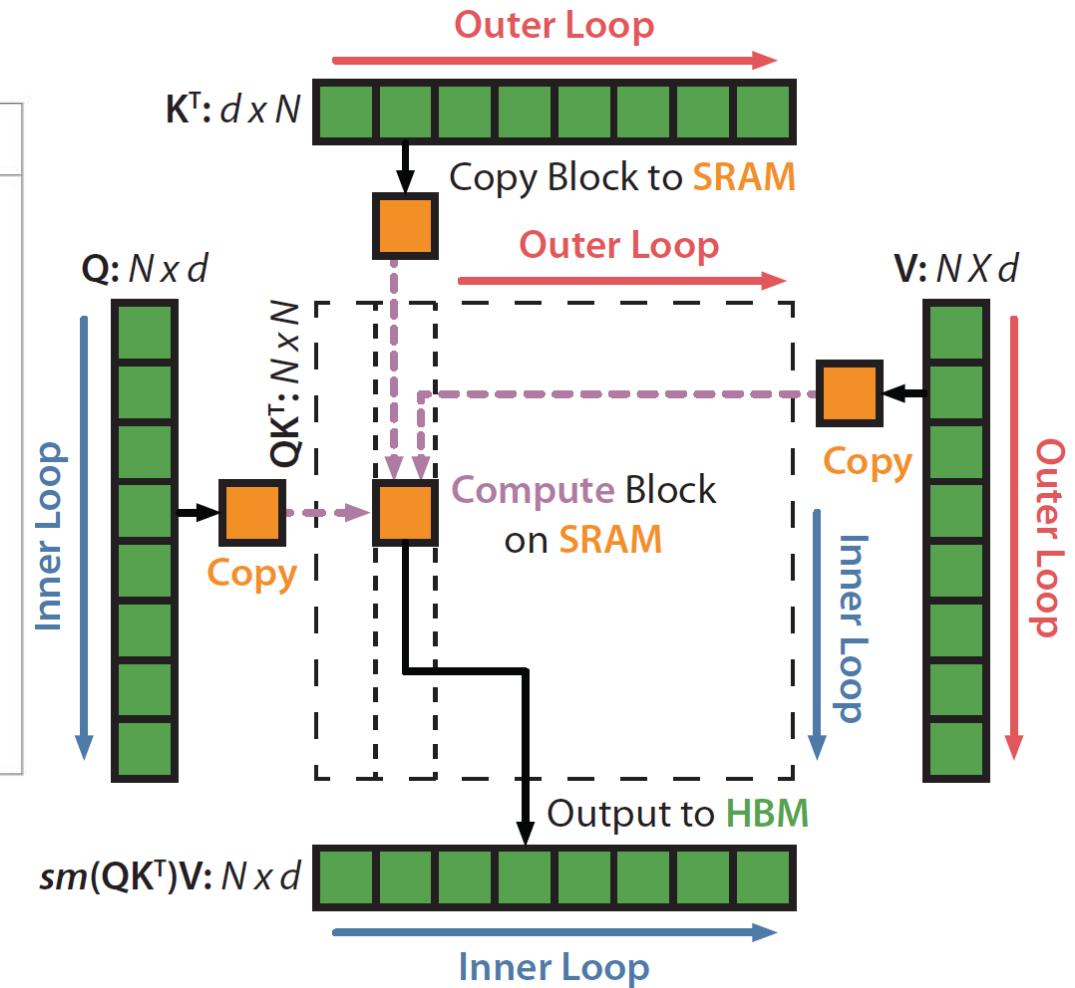


Efficient Inference for LLMs-Flash Attention

Vanilla Attention	Flash Attention
<ol style="list-style-type: none"> 1. Matmul_op (Q,K) <ol style="list-style-type: none"> a. Read Q,K to SRAM b. Compute matmul A=QxK c. Write A to HBM 2. Mask_op <ol style="list-style-type: none"> a. Read A to SRAM b. Mask A into A' c. Write A' to HBM 3. Softmax_op <ol style="list-style-type: none"> a. Read A' to SRAM b. Softmax A' into A'' c. Write A'' to HBM 	<ol style="list-style-type: none"> 1. Read Q,K to SRAM 2. Compute A = QxK 3. Mask A into A' 4. Softmax A' into A'' 5. Write A'' to HBM

Efficient Inference for LLMs-Flash Attention

Vanilla Attention	Flash Attention
1. Matmul_op (Q,K) a. Read Q,K to SRAM b. Compute matmul A=QxK c. Write A to HBM	1. Read Q,K to SRAM 2. Compute $A = QxK$ 3. Mask A into A' 4. Softmax A' into A'' 5. Write A'' to HBM
2. Mask_op a. Read A to SRAM b. Mask A into A' c. Write A' to HBM	
3. Softmax_op a. Read A' to SRAM b. Softmax A' into A'' c. Write A'' to HBM	



Efficient Inference for LLMs-Early Existing

