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https://www.youtube.com/watch?v=VKHfRKewkWw

https://robodk.com/blog/robodks-virtual-assistant/neuralnetwork-training/
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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G. Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.
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Huang, Baichuan, and Amir Aminifar. "TinyFoA: Memory Efficient Forward-Only Algorithm for On-Device Learning." Proceedings of the AAAI
Conference on Attificial Intelligence. Vol. 39. No. 16. 2025.
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https://youtube.com/playlist?list=PLZHQObOWTQDNUG6R1_67000Dx_ZCJB-3pi&si=2MkQ_kFeVhhb8yhO0
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Real Application with FC and CNN
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Natural Language Processing (NLP)

Guo, Daya, et al. "Deepseek-r1 incentivizes reasoning in lims through reinforcement learning." Nature 645.8081 (2025): 633-638.
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Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
https://poloclub.github.io/transformer-explainer/
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Environmental Impact of Training Transformer Luxo

Training Transformer (Strubell E. 2020)

626,155 Ibs

Strubell E, et al. Energy and policy considerations for modern deep learning research. AAAI, 2020.
Vaswani A. Attention is all you need. NeurlPS, 2017.
https://www.forbes.com/sites/robtoews/2020/06/1 7/deep-learnings-climate-change-problem/
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@ GPT-3 @ GPT-4

D. Patterson, et al. Carbon emissions and large neural network training, 2021.
https://tinyml.substack.com/p/the-carbon-impact-of-large-language
Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)
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D. Patterson, et al. Carbon emissions and large neural network training, 2021.
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Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)
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D. Patterson, et al. Carbon emissions and large neural network training, 2021.
https://tinyml.substack.com/p/the-carbon-impact-of-large-language
Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)
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Han, Zeyu, et al. "Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey." Transactions on Machine Learning Research. 2024
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Huang, Baichuan, Ananth Balashankar, and Amir Aminifar. "BEFT: Bias-Efficient Fine-Tuning of Language Models." (2025).
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Gu, Naibin, et al. "Light-PEFT: Lightening Parameter-Efficient Fine-Tuning via Early Pruning." Findings of the Association for Computational

Linguistics ACL 2024. 2024.
Wang, Yuxin, et al. "CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information." Proceedings of the

31st International Conference on Computational Linguistics. 2025.
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Dettmers, Tim, et al. "Qlora: Efficient finetuning of quantized lims." Advances in neural information processing systems 36 (2023): 10088-10115.

https://huggingface.co/blog/hf-bitsandbytes-integration
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Zhang, Yihua, et al. "Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: a benchmark." Proceedings of the 41st International
Conference on Machine Learning. 2024.

Fernandez, Jesus Garcia, Nasir Ahmad, and Marcel van Gerven. "A Unified Perspective on Optimization in Machine Learning and Neuroscience:
From Gradient Descent to Neural Adaptation." arXiv preprint arXiv:2510.18812 (2025).

https://sites.google.com/view/zo-tutorial-aaai-2024/
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Ram, Oiri, et al. "In-context retrieval-augmented language models." Transactions of the Association for Computational Linguistics 11, 2023.
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Prompt Engineering Classify the sentiment of the following sentence as positive or negative:

) & 2y R ERTERE WL o & [
I love this movie!

Review: "It was amazing!" - Label:
-
In-Context Learning  review: "roo boring.” -
Review: "I loved the actors!" =

Query: What is photosynthesis?
l

Retrieval-Augmented
Generation (RAG)

Retrieved: "Photosynthesis is the process by which green plants..."

-

LLM: "Photosynthesis is the process used by plants..."

Ram, Oiri, et al. "In-context retrieval-augmented language models." Transactions of the Association for Computational Linguistics 11, 2023.
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Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in neural information processing systems 35
(2022): 16344-16359.
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Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in neural information processing systems 35
(2022): 16344-16359.
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