

LightFF: Lightweight Inference for Forward-Forward Algorithm

Amin Aminifar*, <u>Baichuan Huang</u>[†], Azra Abtahi[†], Amir Aminifar[†]

- * Institute of Computer Engineering, Heidelberg University, Germany
- † Department of Electrical and Information Technology, Lund University, Sweden

This research has been partially supported by the Swedish Wallenberg AI, Autonomous Systems and Software Program (WASP), the Swedish Research Council (VR), Swedish Foundation for Strategic Research (SSF), the ELLIIT Strategic Research Environment, and the European Union (EU).

Introduction and Background

Global Warming

Global Warming

Europe: an average rise of 2.3°C compared to pre-industrial levels 1°C higher than the global average.

Source: https://giphy.com/; NASA; https://en.wikipedia.org/wiki/Climate_change_in_Europe

Training Transformer (Strubell E. 2020)

Strubell E, et al. Energy and policy considerations for modern deep learning research. AAAI, 2020. Vaswani A. Attention is all you need. NeurIPS, 2017. https://www.forbes.com/sites/robtoews/2020/06/17/deep-learnings-climate-change-problem/

Training Transformer (Strubell E. 2020)

CO

Total Lifetime of a Car

626,155 lbs

5×126,000 lbs

Strubell E, et al. Energy and policy considerations for modern deep learning research. AAAI, 2020. Vaswani A. Attention is all you need. NeurIPS, 2017.

https://www.forbes.com/sites/robtoews/2020/06/17/deep-learnings-climate-change-problem/

Average American in a Year

Training Transformer (Strubell E. 2020)

) 626,155 lbs

Total Lifetime of a Car $5 \times 126,000$ lbs

17×36,156 lbs

Strubell E, et al. Energy and policy considerations for modern deep learning research. AAAI, 2020. Vaswani A. Attention is all you need. NeurIPS, 2017. https://www.forbes.com/sites/robtoews/2020/06/17/deep-learnings-climate-change-problem/

The computational resources needed to produce a best-in-class Al model has on average doubled every 3.4 months.

Strubell E, et al. Energy and policy considerations for modern deep learning research. AAAI, 2020. Vaswani A. Attention is all you need. NeurIPS, 2017. https://www.forbes.com/sites/robtoews/2020/06/17/deep-learnings-climate-change-problem/

Energy Consumption of Training

D. Patterson, et al. Carbon emissions and large neural network training, 2021. <u>https://tinyml.substack.com/p/the-carbon-impact-of-large-language</u> Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Energy Consumption of Training

D. Patterson, et al. Carbon emissions and large neural network training, 2021. <u>https://tinyml.substack.com/p/the-carbon-impact-of-large-language</u> Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Energy Consumption of Training

D. Patterson, et al. Carbon emissions and large neural network training, 2021. <u>https://tinyml.substack.com/p/the-carbon-impact-of-large-language</u> Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Biologically Plausible Alternatives

Human Brain (~20 Watts)

Biologically Plausible Alternatives

Human Brain (~20 Watts)

Back-Propagation (Bio-Implausible)

Biologically Plausible Alternatives

Human Brain (~20 Watts)

Back-Propagation (Bio-Implausible)

Forward-Forward Algorithm (Bio-Plausible)

Energy Consumption of Inference

The percentage of inference in the total ML energy consumed.

D. Patterson, et al. Carbon emissions and large neural network training, 2021. Patterson, David, et al. "The carbon footprint of machine learning training will plateau, then shrink." Computer, 2022.

Lightweight Inference for Forward-Forward Algorithm

The Goodness is the sum of the square of the activity of each hidden neuron.

Insights From FF

Current Layer

Insights From FF

_ _ _ _ _ _ _ _ _ _ _ _ _

The distance between the mean Goodness of the negative and positive samples/distributions increases as we consider more layers.

Distinguishable

G. Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.

Indistinguishable

G. Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.

Distinguishable

G. Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.

Evaluation and Results

Dataset and Application

MNIST Grayscale Image

CIFAR-10 RGB Images

A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009. R. Mark, et al. An annotated ecg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.

Dataset and Application

Real-world wearable applications: Complexity overhead/energy consumption is a major constraint.

A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009. R. Mark, et al. An annotated ecg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.

Generalized Insights

Generalized Insights

The distance between the mean Goodness of the negative and positive samples increases as more layers are taken into account.

Classification Performance

Detect	Error		
DataSet	FF	LightFF	
MNIST	1.51%	1.51%	
CIFAR-10	50.65%	46.05%	
CHB-MIT	39.62%	34.83%	
MIT-BIH	10.74%	10.07%	

LightFF achieves a comparable classification error, compared to the Forward-Forward algorithm.

Dataset	Error		
	BP	LightBP	
MNIST	1.33%	5.21%	
CIFAR-10	43.62%	54.22%	
CHB-MIT	25.63%	40.69%	
MIT-BIH	8.25%	11.55%	

Dataset	Error		
	BP		LightBP
MNIST	1.33%	<	5.21%
CIFAR-10	43.62%	<	54.22%
CHB-MIT	25.63%	<	40.69%
MIT-BIH	8.25%	<	11.55%

Goodness is a good metric for lightweight inference in LightFF.

Inference Complexity

Dataset	MACs		
	FF	LightFF	
MNIST	12.94M	2.95M	
CIFAR-10	17.30M	10.31M	
CHB-MIT	13.39M	8.39M	
MIT-BIH	11.90M	1.99M	

	MACs			MACs		
Dataset	FF		LightFF			
MNIST	12.94M	>	2.95M			
CIFAR-10	17.30M	>	10.31M			
CHB-MIT	13.39M	>	8.39M			
MIT-BIH	11.90M	>	1.99M			

LightFF improves computational efficiency, compared to the Forward-Forward algorithm.

Execution Time

Detect	Execution Time		
Dataset	FF	LightFF	
MNIST	22.81ms	3.39ms	
CIFAR-10	29.57ms	16.38ms	
CHB-MIT	4.73ms	2.85ms	
MIT-BIH	11.26ms	1.83ms	

Execution Time

	Execution Time			
Dataset	FF		LightFF	
MNIST	22.81ms	>	3.39ms	6.7
CIFAR-10	29.57ms	>	16.38ms	1.8
CHB-MIT	4.73ms	>	2.85ms	1.7
MIT-BIH	11.26ms	>	1.83ms	6.2

LightFF reduces the execution time, compared to the Forward-Forward algorithm.

Challenge

Deep Learning to be Efficient

Paper

Wednesday Outreach Activities

