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Abstract—Today, the overwhelming majority of Internet of
Things (IoT) and mobile edge devices have extreme resource
limitations, e.g., in terms of computing, memory, and energy. As a
result, training Deep Neural Networks (DNNs) using the complex
Backpropagation (BP) algorithm on such edge devices presents a
major challenge. Forward-only algorithms have emerged as more
computation- and memory-efficient alternatives without the re-
quirement for backward passes. In this paper, we investigate bina-
rizing state-of-the-art forward-only algorithms, which are applied
to the forward passes of PEPITA, FF, and CwComp. We evaluate
these forward-only algorithms with binarization and demonstrate
that weight-only binarization may be up to ∼31× more efficient
in terms of memory, with minor degradation in classification
performance. Furthermore, we investigate and compare BP and
forward-only algorithms in terms of binarization, finding that
PEPITA and FF are more vulnerable to binary activations. The
code is available at https://github.com/whubaichuan/BinaryFO.

Index Terms—TinyML, IoT, forward-only, binary neural net-
work, memory efficient, computational efficient.

I. INTRODUCTION

TODAY, trillions of Internet of Things (IoT) devices are
deployed and distributed for intelligent perception and

decision-making at the very edge of the cloud [1]. Never-
theless, state-of-the-art Deep Neural Networks (DNNs) based
on Backpropagation (BP) [2] consume massive amounts of
computation and memory, posing a significant challenge for
training and deployment on devices with limited storage,
battery power, and compute capabilities. To address this chal-
lenge, the evolution of deep learning tailored to resource-
constrained devices is rapidly advancing [3].

Forward-only algorithms [4]–[6] have emerged as a pow-
erful supplement to resource-efficient machine learning al-
gorithms. These forward-only algorithms offer computational
and memory efficiency by avoiding backpropagation of errors
across the entire networks. For instance, PEPITA [4] and
Forward-Forward (FF) algorithms [5] enable only forward
passes with layer-wise updating, greatly reducing computation
and memory overheads in the forward pass. As shown in Fig.
1 (a), the memory overheads of PEPITA [4] and FF [5] in the
forward pass are 15 Megabyte (MB) and 16 MB, respectively,
while the memory overhead of BP is 54 MB. Despite these
advantages of forward-only algorithms, the memory require-
ments for PEPITA [4] and FF [5] in forward passes still exceed
the capacity of typical Microcontrollers (MCUs) used in the
state-of-the-art IoT and wearable devices, e.g., e-Glass [7]
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Fig. 1: The memory and computation saving for BP [2],
PEPITA [4], and FF [5].

with STM32L476 ultra-low-power ARM Cortex-M4, which
has only 1 MB of Flash Memory (Flash).

Although several methods have been proposed in the evo-
lution of deep learning, such as pruning, quantization, tensor
decomposition, distillation, compact architecture design, and
neural architecture search, these methods mainly focus on
reducing the memory and computation during inference [8].
In addition, efficient training techniques, such as mixed-
precision training, activation data recomputation, and low-
rank gradient descent, are proposed to reduce memory and
computation during training. However, these techniques are
predominantly designed for BP-based scheme and have not
been explored and verified for forward-only algorithms [1],
[3]. The training scheme for BP and forward-only algorithms
differ significantly. The gradients of weights in BP rely on the
chain rule, while the gradients of weights in PEPITA and FF
are based on hidden activations.

In this paper, we investigate binarizing state-of-the-art
forward-only algorithms, such as PEPITA and FF. Considering
the forward passes of these forward-only algorithms and Fully
Connected Network (FC)-based networks, the majority of
memory overheads stem from the weights. To address this,
we binarize the weights during the forward passes, effectively
reducing memory overheads. This binarization replaces many
multiply-accumulate operations with additions and subtrac-
tions, thereby significantly decreasing computation overheads.
Moreover, much of the computation involves multiplying full-
precision weights by full-precision activations, with multipliers
being the most computation-intensive components of digital
neural network implementations. Therefore, to further allevi-
ate computational overheads in the forward passes, we also
binarize the activations, substantially reducing computation
through 1-bit XNOR with pop-count operations. Our main
contributions are summarized below:

• We investigate binarization in state-of-the-art forward-
only algorithms, applied to the forward passes of these
forward-only algorithms, including PEPITA and FF.

• We show that PEPITA and FF with weight-only bina-
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rization reduce the memory overheads by ∼31× times,
as shown in Fig. 1 (a), and computational overheads
by ∼2× times, with minor degradation in classification
performance. We also show that PEPITA and FF with
both binary weights and binary activations reduce the
computational overheads by ∼64× times, as shown in
Fig. 1 (b), and memory overheads by ∼31× times
with significantly worse classification performance. Our
extensive evaluation and analysis of binary activations
indicate that PEPITA and FF exhibit more degradation
in classification performance compared to BP.

II. BINARY FORWARD-ONLY ALGORITHMS

Let us consider an L-layer DNN with a binary-weight
forward pass. The input x and the target y are utilized for
training the DNN. The activations of the hidden layer l of the
DNN are denoted as hl, where h0 = x. Let us define the
function composition fl : hl−1 → hl for the hidden layer l.
The output activations hl based on the input activation hl−1,
are calculated as follows:

hl = fl(hl−1) (1)

= σl(W
b
l hl−1 + bl),

where W b
l is the binary weights between hidden layers l− 1

and l. σl is the activation function for the hidden layer l. All
binarization is based on the Sign function with the average
of absolute parameter values as a scaling factor [9], that is,
W b

l = 1
n

∑n
i=1 |Wl,i| · Sign(Wl).

A. PEPITA with Binary Weights

PEPITA with binary weights is based on two binary for-
ward passes, namely the standard (denoted by superscript s)
forward pass, i.e., Equation (2), and the modulated (denoted
by superscript m) forward pass, i.e., Equation (3), as shown
in Fig. 2 (b). For the hidden layer l, the gradient of the binary
weights is denoted as Equation (4):

h
(s)
l = σl(W

b
l h

(s)
l−1 + bl), (2)

h
(m)
l = σl(W

b
l h

(m)
l−1 + bl), (3)

δW b
l = (h

(s)
l − h

(m)
l )⊗ (h

(m)
l−1)

T , (4)

where h
(s)
0 = x(s) and h

(m)
0 = x(m). In the second forward

pass, x(m) = x(s) + F (h
(s)
L − y) and F is a fixed random

matrix. The operator ⊗ is the Kronecker Product. Finally, to
streamline the notation for the gradient of the binary weights,
i.e., δ(W b

l ), we simply denote it as δW b
l .

B. FF with Binary Weights

FF with binary weights is also based on two binary forward
passes, namely the positive (denoted by superscript p) forward
pass, i.e., Equation (5), and the negative (denoted by super-
script n) forward pass, i.e, Equation (6), as shown in Fig. 2 (c),
where the positive forward pass consists of the samples with
the correct labels and the negative forward pass consists of the
samples with the incorrect labels [5]. For the hidden layer l,

(a) BP+W b (b) PEPITA+W b

*RRGQHVV

(c) FF+W b

Fig. 2: An overview of BP+W b, PEPITA+W b, and FF+W b.
The paths for updating weights are illustrated by red arrows.

TABLE I: Analysis of memory and computation overheads (F:
FLOPs, B: Bits).

Algorithms PEPITA PEPITA+W b FF FF+W b

Memory All All/32 Max Max/32
Computation 2F×32B 1F×32B 2F×32B 1F×32B

the gradient of the binary weights is denoted as Equation (7):

h
(p)
l = σl(W

b
l h

(p)
l−1 + bl), (5)

h
(n)
l = σl(W

b
l h

(n)
l−1 + bl), (6)

g
(p)
l = (h

(p)
l )Th

(p)
l ,

g
(n)
l = (h

(n)
l )Th

(n)
l ,

δW b
l = h

(p)
l · δg(p)l · σ′

l ⊗ (h
(p)
l−1)

T

+ h
(n)
l · δg(n)l · σ′

l ⊗ (h
(n)
l−1)

T , (7)

The gl is the Goodness in FF [5]. The gradient of the Goodness
gl for hidden layer l is denoted as δg

(p)
l = Sigmoid(g

(p)
l −

θ) − 1 for samples in positive forward pass and δg
(n)
l =

Sigmoid(g
(n)
l − θ)− 0 for samples in negative forward pass,

where θ is the threshold.
In PEPITA with binary weights and FF with binary weights,

we further modify the gradient of the binary weights, as shown
below:

δWl = δW b
l ⊙ 1|Wl|≤1,

where ⊙ is the element-wise product. This operation preserves
the gradient information and cancels the gradient when the
weights are too large to avoid degradation in classification
performance [10].

In the first forward pass, binary weights are utilized in the
calculation from the bottom to top layers, reducing memory by
approximately 32× times and computation by approximately
2× times, as illustrated in Table I. PEPITA [4] needs to
store all the weights and activations (shown with “All” in
Table I) in the first forward pass until the modulated input
arrives, as shown in Fig. 2 (b); whereas FF [5] only requires
to store the maximum memory overheads among every two
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consecutive layers for weights and activations (shown with
“Max” in Table I), as shown in Fig. 2 (c). In the second
forward pass, the activations are used to calculate gradients
of binary weights locally. After the two forward passes, the
gradients and the full-precision weights are exploited during
the update step because maintaining precision weights during
the updates is essential for the Stochastic Gradient Descent
(SGD) algorithm to function effectively [11]. Additionally, the
updated weights are clipped within the range [−1, 1] to prevent
full-precision weights from growing excessively large without
affecting binary weights [10]. Once the update is completed,
there is no need to retain the full-precision weights.

III. EXPERIMENTAL & RESULTS

A. Experimental Setup

1) Datasets: To evaluate binary forward-only algorithms,
we consider two standard datasets: the MNIST dataset1

of handwritten digits and the CIFAR-10 dataset2 of object
recognition. Moreover, we extend our evaluation to a real-
world application on wearable IoT devices with stringent
computational and memory constraints, specifically, cardiac
arrhythmia classification based on the MIT-BIH Arrhythmia
Electrocardiogram (ECG) Dataset3.

2) Implementation and Evaluation: Our analysis is per-
formed in PyTorch4. For the DNNs, we exploit the default
architectures in FF [5] and PEPITA [4], i.e., 4 hidden layers
and 2000 neurons for each layer in FF [5], 3 hidden layers
and 1024 neurons for each layer in PEPITA [4]. For the
memory overheads in the forward pass, we primarily consider
layer activations and DNN parameters (weights and biases),
excluding other scratch buffers to ensure generalizability, as
their impact depends on low-level implementation details.
For measuring computation, we consider the metric #Floating
Point Operations (FLOPs)×Bits in the inference phase. The
default full-precision of tensors in Pytorch is Float32, i.e., 32
bits.

Our experiments utilize balanced datasets, with classifica-
tion performance assessed using error, i.e., the total number
of incorrectly classified inputs divided by the total number of
inputs. All algorithms are trained on a server equipped with
2×16-core Intel (R) Xeon (R) Gold 6226R (Skylake) Central
Processing Units (CPUs) and 1 NVIDIA Tesla T4 Graphics
Processing Card (GPU).

B. PEPITA with Binary Weights and FF with Binary Weights

In this section, we extensively evaluate PEPITA+W b

(PEPITA [4] with weight-only binarization) and FF+W b (FF
[5] with weight-only binarization), in terms of error versus
memory and computational overheads. Specifically, binary
weights between hidden layer l− 1 and l are denoted as W b

l .
The errors for variants of BP [2], PEPITA [4], and FF [5]
are presented in Table II, where a lower error means higher

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/∼kriz/cifar.html
3https://physionet.org/content/mitdb/1.0.0/
4https://github.com/whubaichuan/BinaryFO

TABLE II: Errors (%) for variants of BP, PEPITA and FF.

Algorithms MNIST CIFAR-10 MIT-BIH

BP [2] 1.32 42.56 7.92
BP+W b 1.48 44.77 8.37
BP+W b

l +hb
l−1 2.81 50.06 10.88

BP+W b
l +hb

l 3.09 53.14 14.20
BP+Binary Gradient 62.28 79.95 68.36
PEPITA [4] 2.51 54.43 13.33
PEPITA+W b 3.76 56.40 18.32
PEPITA+W b

l +hb
l−1 20.68 67.21 33.28

PEPITA+W b
l +hb

l 89.68 90.00 79.77
FF [5] 1.53 46.53 10.57
FF+W b 3.14 53.44 11.66
FF+W b

l +hb
l−1 6.60 55.08 21.89

FF+W b
l +hb

l 90.42 90.00 71.42

classification accuracy. For the MNIST, CIFAR-10, and MIT-
BIH datasets, the error of PEPITA+W b is close to the error
of PEPITA [4]. For instance, on CIFAR-10, the error of
PEPITA+W b is 56.40%, while the original PEPITA achieves
54.43% [4]. The error of FF+W b also exhibits a close error to
FF [5] across these three datasets. In this scenario, the compu-
tational overheads of PEPITA+W b and FF+W b are reduced
by ∼2× times, and the memory overheads of PEPITA+W b

and FF+W b are reduced by ∼31× times compared to the
original forward-only algorithms, as shown in Fig. 3.

BP+W b (BP with weight-only binarization) shows a con-
siderably smaller error gap with BP across these datasets. Ad-
ditionally, BP+W b outperforms PEPITA+W b and FF+W b in
terms of classification performance. For instance, the error of
BP+W b on MNIST is 1.48%, while the error of PEPITA+W b

on MNIST is 3.76% and the error of FF+W b on MNIST is
3.14%.

C. Ablation Study

In the ablation study, we continue to binarize the activations
for PEPITA [4] and FF [5]. Binary activations can be further
categorized into binary input activations hb

l−1 in Equation (1),
where hb

l−1 = 1
n

∑n
i=1 |hl−1,i|·Sign(hl−1), and binary output

activations hb
l in Equation (1), where hb

l = 1
n

∑n
i=1 |hl,i| ·

Sign(hl).
For PEPITA+W b, the gradients for input and output acti-

vations, based on Equation (4), are denoted as follows:

δW b
l (input) = (h

(s)
l − h

(m)
l )⊗ (h

(m),b
l−1 )T , (8)

δW b
l (output) = (h

(s),b
l − h

(m),b
l )⊗ (h

(m)
l−1)

T , (9)

where PEPITA+W b with binary input activations is denoted as
PEPITA+W b

l +hb
l−1 (Equation (8)); PEPITA+W b with binary

output activations is denoted as PEPITA+W b
l +hb

l (Equation
(9)).
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Fig. 3: Error (%) versus Memo (memory overheads) and Comp (computational overheads) for variants of PEPITA and FF.

For FF+W b, the gradients for input and output activations,
based on Equation (7), are denoted as follows:

δW b
l (input) = h

(p)
l · δg(p)l · σ′

l ⊗ (h
(p),b
l−1 )T

+ h
(n)
l · δg(n)l · σ′

l ⊗ (h
(n),b
l−1 )T , (10)

δW b
l (output) = h

(p),b
l · δg(p)l · σ′

l ⊗ (h
(p)
l−1)

T

+ h
(n),b
l · δg(n)l · σ′

l ⊗ (h
(n)
l−1)

T , (11)

where FF+W b with binary input activations is denoted as
FF+W b

l +hb
l−1 (Equation (10)); FF+W b with binary output

activations is denoted as FF+W b
l +hb

l (Equation (11)).
1) Binary Input Activations: As shown in Table II, the

error of PEPITA+W b
l +hb

l−1 increases when compared with
PEPITA [4]. For example, on CIFAR-10, the error of
PEPITA+W b

l +hb
l−1 increases from 54.43% to 67.21% com-

pared to PEPITA [4]. The error of FF+W b
l +hb

l−1 also
increases when compared with FF [5] across these three
datasets. Despite the degradation in classification performance
of forward-only algorithms with binary weights and binary
input activations, the computational overheads are reduced by
∼64× times, and the memory overheads are reduced by ∼31×
times compared to the original forward-only algorithms, as
shown in Fig. 3.

We also evaluate BP with binary weights and binary input
activations (BP+W b

l +hb
l−1), which significantly outperforms

PEPITA+W b
l +hb

l−1 and FF+W b
l +hb

l−1 in terms of classifica-
tion performance. For instance, the error of BP+W b

l +hb
l−1 on

MNIST is 2.81%, while the error of PEPITA+W b
l +hb

l−1 on
MNIST is 20.68% and the error of FF+W b

l +hb
l−1 on MNIST

is 6.60%. The results presented in Table II also demonstrate
that BP+W b

l +hb
l−1 achieves a close error compared with BP

for MNIST, CIFAR-10, and MIT-BIH datasets. However, the
comparable error with binary input activations observed in BP
[2] is not reflected in PEPITA [4] and FF [5]. We will discuss

this in Section III-D.

2) Binary Output Activations: As shown in Table II, the
error of PEPITA+W b

l + hb
l increases significantly when

compared with PEPITA [4]. For example, on CIFAR-10, the
error of PEPITA with binary weights and output activations
increases from 54.43% to 90.00% compared to PEPITA [4].
The error of FF+W b

l + hb
l also increases significantly when

compared with FF [5] across these three datasets. In this case,
the computational overheads are reduced by ∼64× times, and
the memory overheads are reduced by ∼31× times compared
to the original forward-only algorithms, as shown in Fig. 3.

We also evaluate BP with binary weights and binary output
activations (BP+W b

l + hb
l ), which also significantly outper-

forms PEPITA+W b
l +hb

l and FF+W b
l +hb

l in terms of classi-
fication performance. For instance, the error of BP+W b

l +hb
l

on MNIST is 3.09%, while the error of PEPITA+W b
l +hb

l on
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MNIST is 89.68% and the error of FF+W b
l +hb

l on MNIST
is 90.42%. The error between BP and BP+W b

l + hb
l is only

slightly worse, a trend not reflected in PEPITA [4] and FF [5].
We will discuss this in Section III-D.

D. Discussion

The error gap between BP+W b and PEPITA+W b as well
as FF+W b, when binarizing the activations, warrants further
investigation and discussion.

In BP [2], the gradient δWl based on the chain rule is
denoted as follows (where σl is the ReLU activation function,
and its derivative σ′

l is 1 when the input is positive and 0
otherwise):

δWl =
[
(W T

l+1(W
T
l+2...(W

T
L δhL ⊙ σ′

L)...⊙ σ′
l+2)⊙ σ′

l+1)
]

⊙ σ′
l⊗hT

l−1. (12)

In BP+W b with binary activations, to alleviate significant
information loss, the first and the last layers are not binarized
to avoid performance degradation [12]. Consequently, δhL

is kept in full precision, i.e., Float32. During its backward
pass, the binary weights and binary activations construct the
linear combination of δhL by −1 and 1 based on Equation
(12). Therefore, gradients δW b

l can have the high precision of
Float32 despite the binarization of weights and activations in
the hidden layers. The gradient δW b

l in BP+W b with binary
activations based on Equation (12) when all the σ′

l values are
1, is simplified as follows:

δW b
l ∝

[
(W b

l+1)
T (W b

l+2)
T ...(W b

L)
T δhL

]
⊗ (hb

l−1)
T .

The high-precision of Float32 gradient δW b
l preserves suf-

ficient amounts of information, thereby preventing training
failure. In contrast, Table II demonstrates that BP with binary
gradient achieves a considerable degradation in classification
performance compared to the original BP.

However, in PEPITA [4] and FF [5], the gradient is di-
rectly derived from the activations, according to Equation
(4) and (7). There are two cases of binary activations: bi-
nary input activations (hb

l−1) or binary output activations
(hb

l ). For PEPITA+W b with binary input activations (i.e.,
PEPITA+W b

l +hb
l−1 in Table II), according to Equation (8),

the gradient δW b
l is based on h

(s)
l , h(m)

l , and h
(m),b
l−1 , where

h
(s)
l and h

(m)
l are denoted as follows:

h
(s)
l = σl(W

b
l h

(s),b
l−1 + bl), (13)

h
(m)
l = σl(W

b
l h

(m),b
l−1 + bl), (14)

where h
(s)
l and h

(m)
l are mainly involved in binary matrix

multiplication between W b
l ∈ {−1, 1}Dl×Dl−1 and hb

l−1 ∈
{−1, 1}Dl−1×1 (Dl is the size of output of layer l and Dl−1

is the size of input to layer l). The binary matrix multiplication
results in the value range [−Dl−1, Dl−1] for each element in
h
(s)
l and h

(m)
l , with a range significantly smaller than the

range of Float32. Moreover, h(s)
l −h

(m)
l obtains a range [−2 ·

Dl−1, 2 ·Dl−1]. For δW b
l , (h(s)

l −h
(m)
l )⊗ (h

(m),b
l−1 )T obtains

a range [−2 ·Dl−1, 2 ·Dl−1] due to Kronecker product, which
has a range significantly smaller than the range of Float32.

As shown in Table II, PEPITA+W b
l +hb

l−1 has a significantly
worse classification performance compared to PEPITA [4].

For PEPITA+W b with binary output activations (i.e.,
PEPITA+W b

l +hb
l in Table II), according to Equation (9),

(h
(s),b
l −h

(m),b
l ) ∈ {−2, 0, 2}. At the same time, each binary

output activation is the input activation to the next layer, for
instance, the output activation h

(s),b
l−1 from layer l − 1 is the

input activation to layer l. We assume the input activation
h
(m)
l−1 ∈ {−1, 1}. Therefore, the δW b

l ∈ {−2, 0, 2}, which is
significantly smaller than the range of [−2 · Dl−1, 2 · Dl−1],
indicating that PEPITA+W b

l +hb
l has significantly lower clas-

sification performance compared to PEPITA+W b
l +hb

l−1 in
Table II.

For FF+W b with binary input activations (i.e.,
FF+W b

l +hb
l−1 in Table II), according to Equation (10), taking

the positive forward pass as an example, its gradient is based
on h

(p)
l , h(p),b

l−1 , and δg
(p)
l = Sigmoid(g

(p)
l − θ) − 1, where

h
(p)
l = σl(W

b
l h

(p),b
l−1 + bl). h

(p)
l has a range [−Dl−1, Dl−1]

and h
(p),b
l−1 ∈ {−1, 1}. The Kronecker product between h

(p)
l

and h
(p),b
l−1 results in a range [−Dl−1, Dl−1]. δg

(p)
l is a

scalar, leading to loss of information when h
(p)
l is in range

[−Dl−1, Dl−1] instead of Float32, because g
(p)
l =

∑
i(h

(p)
l,i )

2

and δg
(p)
l = Sigmoid(g

(p)
l − θ) − 1. Therefore, the range of

the gradient is significantly smaller than the range of Float32,
incurring a worse classification performance compared to
FF [5], as shown in Table II.

For FF+W b with binary output activations (i.e.,
FF+W b

l +hb
l in Table II), according to Equation (11),

h
(p),b
l ∈ {−1, 1}. At the same time, each binary

output is the input activation to the next layer. We
assume the input activation h

(p)
l−1 ∈ {−1, 1}. Thus, the

h
(p),b
l ⊗ (h

(p)
l−1)

T ∈ {−1, 1}, which is significantly smaller
than the range of binary input activations, i.e., [−Dl−1, Dl−1].
Moreover, δg(p)l also loses information when h

(p)
l ∈ {−1, 1}

instead of range [−Dl−1, Dl−1]. This analysis demonstrates
that FF+W b

l +hb
l has a significantly worse classification

performance compared to FF+W b
l +hb

l−1 in Table II.
The discussion above supports the results presented in

Table II, indicating that the error of PEPITA+W b (FF+W b)
is lower than PEPITA+W b

l +hb
l−1 (FF+W b

l +hb
l−1); the error

of PEPITA+W b
l +hb

l−1 (FF+W b
l +hb

l−1) is significantly lower
than PEPITA+W b

l +hb
l (FF+W b

l +hb
l ).

In summary, our findings indicate that in PEPITA+W b and
FF+W b, binarizing only the weights reduces memory over-
heads by ∼31× times and computational overheads by ∼2×
times, with minor degradation in classification performance
compared to the original forward-only algorithms. When both
the weights and input activations are binarized, PEPITA and
FF achieve a reduction in computational overheads by ∼64×
times in total. However, binarizing input activations results in
a loss of information from full-precision gradients, leading to
decreased classification performance. Additionally, binarizing
output activations causes an even more pronounced degrada-
tion in classification performance.
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TABLE III: Errors (%) for variants of CwComp.

Predictor Algorithms MNIST CIFAR-10

CwComp [6] 1.23 26.08
Global Averaging CwComp+W b 2.69 31.24

Predictor CwComp+W b
l +hb

l−1 31.11 59.79
CwComp+W b

l +hb
l 69.61 85.39

Softmax Predictor

CwComp [6] 0.66 22.93
CwComp+W b 0.70 25.35
CwComp+W b

l +hb
l−1 11.63 34.33

CwComp+W b
l +hb

l 11.36 53.73

E. Extension to CwComp

We extend the binarization to the most recent state-of-the-
art forward-only algorithms, i.e., CwComp [6], due to its
significantly better performance on benchmarks. We report
these results with two kinds of predictors for CwComp [6]
in Table III, namely, the global averaging predictor and the
softmax predictor. CwComp+W b (weight-only binarization)
achieves a lower error on MNIST and a significantly lower
error on CIFAR-10 when compared to PEPITA+W b and
FF+W b. To qualitatively analyze the gradient information
loss, we binarize the forward pass in training.

For the global averaging predictor, the channel-wise com-
petition (CwC) loss function, with the convolutional positive
goodness, is exploited. The goodness makes the gradient
similar to FF [5], as we presented in Section III-D. As
presented in Table III, with binary activation, the error of
CwComp+W b is significantly increased.

For the softmax predictor, the standard Softmax layer was
trained with Cross-Entropy loss using the last block. The last
layer is not binarized as BP [12]; therefore, the gradient of this
classifier is kept in high-precision of Float32, similar to BP
[2], as we presented in Section III-D. Therefore, with binary
activation, the error of CwComp+W b with softmax predictor
is also increased, but far lower than the global averaging
predictor, as presented in Table III.

IV. CONCLUSION

Forward-only algorithms avoid error backpropagation across
the entire network, hence may potentially save substantial
amount of computation and memory. In this paper, we in-
vestigate binarizing several state-of-the-art forward-only algo-
rithms, including PEPITA and FF. Our evaluation demonstrates
that weight-only binarization reduces the memory overheads
by ∼31× times and the computational overheads by ∼2×
times, with minor degradation in classification performance.
Binary activations reduce the computational overheads by
∼64× times and memory overheads by ∼31× times, albeit
with a significant decrease in classification performance. Ad-
ditionally, we investigate the gradient derivation differences
among BP, PEPITA, and FF. Our findings indicate that bi-
narizing activations degrade the classification performance of
PEPITA and FF more than BP.
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